BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11891666)

  • 1. Striatopallidal neurons are selectively protected by neurturin in an excitotoxic model of Huntington's disease.
    Marco S; Pérez-Navarro E; Tolosa E; Arenas E; Alberch J
    J Neurobiol; 2002 Mar; 50(4):323-32. PubMed ID: 11891666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic acid excitotoxicity in vivo.
    Pérez-Navarro E; Arenas E; Marco S; Alberch J
    Eur J Neurosci; 1999 Jan; 11(1):241-9. PubMed ID: 9987028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease.
    Pérez-Navarro E; Akerud P; Marco S; Canals JM; Tolosa E; Arenas E; Alberch J
    Neuroscience; 2000; 98(1):89-96. PubMed ID: 10858615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington's disease.
    Pérez-Navarro E; Canudas AM; Akerund P; Alberch J; Arenas E
    J Neurochem; 2000 Nov; 75(5):2190-9. PubMed ID: 11183872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease.
    Alberch J; Pérez-Navarro E; Canals JM
    Brain Res Bull; 2002 Apr; 57(6):817-22. PubMed ID: 12031278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 differentially regulate the phenotype and prevent degenerative changes in striatal projection neurons after excitotoxicity in vivo.
    Pérez-Navarro E; Alberch J; Neveu I; Arenas E
    Neuroscience; 1999; 91(4):1257-64. PubMed ID: 10391433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington's disease.
    Wei H; Qin ZH; Senatorov VV; Wei W; Wang Y; Qian Y; Chuang DM
    Neuroscience; 2001; 106(3):603-12. PubMed ID: 11591460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential changes in striatal projection neurons in R6/2 transgenic mice for Huntington's disease.
    Sun Z; Del Mar N; Meade C; Goldowitz D; Reiner A
    Neurobiol Dis; 2002 Dec; 11(3):369-85. PubMed ID: 12586547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative survival of striatal projection neurons and interneurons after intrastriatal injection of quinolinic acid in rats.
    Figueredo-Cardenas G; Anderson KD; Chen Q; Veenman CL; Reiner A
    Exp Neurol; 1994 Sep; 129(1):37-56. PubMed ID: 7925841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine-opiate interaction in the regulation of neostriatal and pallidal neuronal activity as assessed by opioid precursor peptides and glutamate decarboxylase messenger RNA expression.
    Mavridis M; Besson MJ
    Neuroscience; 1999; 92(3):945-66. PubMed ID: 10426535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum.
    Küppenbender KD; Standaert DG; Feuerstein TJ; Penney JB; Young AB; Landwehrmeyer GB
    J Comp Neurol; 2000 Apr; 419(4):407-21. PubMed ID: 10742712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective modifications in GAD67 mRNA levels in striatonigral and striatopallidal pathways correlate to dopamine agonist priming in 6-hydroxydopamine-lesioned rats.
    Carta AR; Fenu S; Pala P; Tronci E; Morelli M
    Eur J Neurosci; 2003 Nov; 18(9):2563-72. PubMed ID: 14622157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA.
    Venero JL; Beck KD; Hefti F
    Neuroscience; 1994 Jul; 61(2):257-68. PubMed ID: 7969907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid.
    Alexi T; Venero JL; Hefti F
    Neuroscience; 1997 May; 78(1):73-86. PubMed ID: 9135090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia.
    Bordelon YM; Chesselet MF
    Neuroscience; 1999; 93(3):843-53. PubMed ID: 10473250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease.
    Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD
    Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced striatopallidal gamma-aminobutyric acid (GABA)
    Perez-Rosello T; Gelman S; Tombaugh G; Cachope R; Beaumont V; Surmeier DJ
    Mov Disord; 2019 May; 34(5):684-696. PubMed ID: 30726572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease.
    Araujo DM; Hilt DC
    Neuroscience; 1997 Dec; 81(4):1099-110. PubMed ID: 9330371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus.
    Hoover BR; Marshall JF
    Neuroscience; 2002; 111(1):111-25. PubMed ID: 11955716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.