These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11891712)

  • 1. Polymer microchips bonded by O2-plasma activation.
    Wu Z; Xanthopoulos N; Reymond F; Rossier JS; Girault HH
    Electrophoresis; 2002 Mar; 23(5):782-90. PubMed ID: 11891712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping.
    Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E
    J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer microfluidic chips for electrochemical and biochemical analyses.
    Rossier J; Reymond F; Michel PE
    Electrophoresis; 2002 Mar; 23(6):858-67. PubMed ID: 11920870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for UV-bonding in the fabrication of glass electrophoretic microchips.
    Huang Z; Sanders JC; Dunsmor C; Ahmadzadeh H; Landers JP
    Electrophoresis; 2001 Oct; 22(18):3924-9. PubMed ID: 11700722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices.
    Bhattacharyya A; Klapperich CM
    Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode.
    Hao Z; Chen H; Zhu X; Li J; Liu C
    J Chromatogr A; 2008 Oct; 1209(1-2):246-52. PubMed ID: 18778825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping of thermoset polyester microfluidic devices.
    Fiorini GS; Lorenz RM; Kuo JS; Chiu DT
    Anal Chem; 2004 Aug; 76(16):4697-704. PubMed ID: 15307779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of electroosmotic flow in laser-ablated and chemically modified hot imprinted poly(ethylene terephthalate glycol) microchannels.
    Henry AC; Waddell EA; Shreiner R; Locascio LE
    Electrophoresis; 2002 Mar; 23(5):791-8. PubMed ID: 11891713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature UV adhesive bonding of CE devices.
    Carroll S; Crain MM; Naber JF; Keynton RS; Walsh KM; Baldwin RP
    Lab Chip; 2008 Sep; 8(9):1564-9. PubMed ID: 18818814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture mechanism of metal electrode integrated on a chip and fabrication of a poly(ethylene terephthalate) electrophoresis microchip.
    Liu C; Li JM; Liu JS; Wang LD; Hao ZX; Chen HW
    Talanta; 2009 Oct; 79(5):1341-7. PubMed ID: 19635368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of polymer microfluidic devices using in-channel atom transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Electrophoresis; 2008 Jul; 29(13):2760-7. PubMed ID: 18615784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents.
    Brown L; Koerner T; Horton JH; Oleschuk RD
    Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of glycidyl-containing poly(methyl methacrylate) microchips using surface-initiated atom-transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Anal Chem; 2008 Feb; 80(3):856-63. PubMed ID: 18179249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA.
    Long TM; Prakash S; Shannon MA; Moore JS
    Langmuir; 2006 Apr; 22(9):4104-9. PubMed ID: 16618151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.