These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11892329)

  • 21. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder.
    Mousa WF; Kobayashi M; Kitamura Y; Zeineldin IA; Nakamura T
    J Biomed Mater Res; 1999 Dec; 47(3):336-44. PubMed ID: 10487884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of monomer vapor release from two-solution bone cement by using a novel FTIR technique.
    Merkhan IK; Hasenwinkel JM; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):643-8. PubMed ID: 15906387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiography of the PROSTALAC (prosthesis with antibiotic-loaded acrylic cement) orthopedic implant.
    Gee R; Munk PL; Keogh C; Nicolaou S; Masri B; Marchinkow LO; Ellis J; Chan LP
    AJR Am J Roentgenol; 2003 Jun; 180(6):1701-6. PubMed ID: 12760947
    [No Abstract]   [Full Text] [Related]  

  • 24. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy.
    Nussbaum DA; Gailloud P; Murphy K
    J Vasc Interv Radiol; 2004 Feb; 15(2 Pt 1):121-6. PubMed ID: 14963178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ambient theatre temperature and cement setting time in total knee arthroplasty.
    Elliott R; Regazzola G; Bruce WJM
    ANZ J Surg; 2019 Nov; 89(11):1424-1427. PubMed ID: 31628729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss.
    Boyd D; Towler MR; Wren A; Clarkin OM
    J Mater Sci Mater Med; 2008 Apr; 19(4):1745-52. PubMed ID: 18197364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial strength between molded UHMWPE and PMMA-MMA monomer treated UHMWPE.
    Park KD; Kang YH; Park JB
    J Long Term Eff Med Implants; 1999; 9(4):303-18. PubMed ID: 10847970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrusion Characteristics of Three Bone Cements for Tibial Component of Total Knee Arthroplasty in a Cadaveric Bone Model.
    Walden JK; Chong AC; Dinh NL; Adrian S; Cusick R; Wooley PH
    J Surg Orthop Adv; 2016; 25(2):74-9. PubMed ID: 27518289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative roles of cement molecular weight and mixing method on the fatigue performance of acrylic bone cement: Simplex P versus Osteopal.
    Lewis G
    J Biomed Mater Res; 2000; 53(1):119-30. PubMed ID: 10634961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone-substitute compounds.
    Beruto DT; Mezzasalma SA; Capurro M; Botter R; Cirillo P
    J Biomed Mater Res; 2000 Mar; 49(4):498-505. PubMed ID: 10602083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiopacity and fatigue characterization of a novel acrylic bone cement with sodium fluoride.
    Minari C; Cristofolini L; Baruffaldi F; Pierotti L
    Artif Organs; 2000 Sep; 24(9):751-7. PubMed ID: 11012547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative influence of composition and viscosity of acrylic bone cement on its apparent fracture toughness.
    Lewis G
    Biomed Mater Eng; 2000; 10(1):1-11. PubMed ID: 10950202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Techniques for improving the initial strength of the tibial tray-cement interface bond.
    Billi F; Kavanaugh A; Schmalzried H; Schmalzried TP
    Bone Joint J; 2019 Jan; 101-B(1_Supple_A):53-58. PubMed ID: 30648489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical versus manual mixing of bone cement.
    Lindén U
    Acta Orthop Scand; 1988 Aug; 59(4):400-2. PubMed ID: 3421076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved orthopaedic bone cement formulations based on rubber toughening.
    Puckett AD; Roberts B; Bu L; Mays JW
    Crit Rev Biomed Eng; 2000; 28(3 - 4):457-61. PubMed ID: 11108215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixing does not improve mechanical properties of all bone cements. Manual and centrifugation-vacuum mixing compared for 10 cement brands.
    Hansen D; Jensen JS
    Acta Orthop Scand; 1992 Feb; 63(1):13-8. PubMed ID: 1738962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Static shear strength between polished stem and seven commercial acrylic bone cements.
    Zhang H; Brown L; Blunt L
    J Mater Sci Mater Med; 2008 Feb; 19(2):591-9. PubMed ID: 17619954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wear of acrylic cement (methylene-polymethacrylate) can manifest as extraosseous cement granuloma or false aneurysm of the popliteal artery after total knee arthroplasty.
    Babiak I
    J Long Term Eff Med Implants; 2014; 24(2-3):139-45. PubMed ID: 25272212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.