BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11892737)

  • 1. [Principle demonstration of nutrient delivery system in a space vegetable planting prototype facility].
    Guo SS; Xu B; Ai WD; Wang K; Liu XY; Wang PX
    Space Med Med Eng (Beijing); 2001 Jun; 14(3):206-9. PubMed ID: 11892737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of a prototype of space vegetable-cultivating facility for ground-based experiments].
    Guo SS; Liu XY; Han LJ; Zhu JT; Wang XX; Wei M; Ai WD; Yang JS; Tang YK
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):37-40. PubMed ID: 15852548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Tube Plant Nutrient Delivery System development: a device for nutrient delivery in microgravity.
    Dreschel TW; Brown CS; Piastuch WC; Hinkle CR; Knott WM
    Adv Space Res; 1994 Nov; 14(11):47-51. PubMed ID: 11540217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of plant growth chambers for the experiments under microgravity conditions (4)-results of two experiments for water circulation in parabolic flight].
    Tani A; Tahara N; Seino K; Kitaya Y; Saito T; Goto E; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):224-5. PubMed ID: 12533008
    [No Abstract]   [Full Text] [Related]  

  • 5. [Pre-flight ground studies for the Water Offset Nutrient Delivery Experiment (WONDER): a spaceflight payload comparing two nutrient delivery systems for plant growth in space].
    Kasahara H; Levine L; Tynes GK; Levine HG
    Biol Sci Space; 2001 Oct; 15(3):232-3. PubMed ID: 11997618
    [No Abstract]   [Full Text] [Related]  

  • 6. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake].
    Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of water and nutrients using a porous tube: a method for growing plants in space.
    Dreschel TW; Sager JC
    HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in technologies required for a "Salad Machine".
    Kliss M; Heyenga AG; Hoehn A; Stodieck LS
    Adv Space Res; 2000; 26(2):263-9. PubMed ID: 11543161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydroponic system for microgravity plant experiments.
    Wright BD; Bausch WC; Knott WM
    Trans ASAE; 1988; 31(2):440-6. PubMed ID: 11539001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of root-zone media for higher plant cultivation in space.
    Guo SS; Ai WD; Zhao CJ; Han LJ; Wang JX
    Space Med Med Eng (Beijing); 2004 Apr; 17(2):93-7. PubMed ID: 15909382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary movement of liquid in granular beds in microgravity.
    Yendler BS; Webbon B; Podolski I; Bula RJ
    Adv Space Res; 1996; 18(4-5):233-7. PubMed ID: 11538803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering strategies for the design of plant nutrient delivery systems for use in space: approaches to countering microbiological contamination.
    Gonzales AA; Schuerger AC; Barford C; Mitchell R
    Adv Space Res; 1996; 18(4-5):5-20. PubMed ID: 11538815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].
    Bluem V; Paris F
    Acta Astronaut; 2001; 48(5-12):287-97. PubMed ID: 11858270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a plant growth unit for growing plants over a long-term life cycle under microgravity conditions.
    Kitaya Y; Tani A; Goto E; Saito T; Takahashi H
    Adv Space Res; 2000; 26(2):281-8. PubMed ID: 11543163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germination and elongation of flax in microgravity.
    Levine HG; Anderson K; Boody A; Cox D; Kuznetsov OA; Hasenstein KH
    Adv Space Res; 2003; 31(10):2261-8. PubMed ID: 14686441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Microgravity Q; 1992 Apr; 2(2):109-14. PubMed ID: 11541047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A capillary-driven root module for plant growth in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1407-12. PubMed ID: 11542600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of a ground-based experimental facility for space cultivation of higher plant].
    Guo SS; Wang PX; Hou JD; Ai WD; Chao ZG
    Space Med Med Eng (Beijing); 2000 Feb; 13(1):19-24. PubMed ID: 12214604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Acta Astronaut; 1993 Aug; 29(8):639-44. PubMed ID: 11541646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-duration space mission regenerative life support.
    Samsonov NM; Bobe LS; Gavrilov LI; Novikov VM; Farafonov NS; Grigoriev JI; Zaitsev EN; Romanov SJ; Grogoriev AI; Sinjak JE
    Acta Astronaut; 2000; 47(2-9):129-38. PubMed ID: 11708365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.