BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11892988)

  • 1. Xenopus small heat shock proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a folding-competent state.
    Abdulle R; Mohindra A; Fernando P; Heikkila JJ
    Cell Stress Chaperones; 2002 Jan; 7(1):6-16. PubMed ID: 11892988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of molecular chaperones using a Xenopus oocyte protein refolding assay.
    Heikkila JJ; Kaldis A; Abdulle R
    Methods Mol Biol; 2006; 322():213-22. PubMed ID: 16739726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation or deletion of the C-terminal tail affects the function and structure of Xenopus laevis small heat shock protein, hsp30.
    Fernando P; Abdulle R; Mohindra A; Guillemette JG; Heikkila JJ
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Sep; 133(1):95-103. PubMed ID: 12223216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity.
    Fernando P; Heikkila JJ
    Cell Stress Chaperones; 2000 Apr; 5(2):148-59. PubMed ID: 11147966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos.
    Tam Y; Heikkila JJ
    Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and function of small heat shock protein genes during Xenopus development.
    Heikkila JJ
    Semin Cell Dev Biol; 2003 Oct; 14(5):259-66. PubMed ID: 14986855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105alpha and Hsp105beta.
    Yamagishi N; Nishihori H; Ishihara K; Ohtsuka K; Hatayama T
    Biochem Biophys Res Commun; 2000 Jun; 272(3):850-5. PubMed ID: 10860841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein.
    Lee GJ; Vierling E
    Plant Physiol; 2000 Jan; 122(1):189-98. PubMed ID: 10631262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsc70/Hsp40 chaperone system mediates the Hsp90-dependent refolding of firefly luciferase.
    Minami Y; Minami M
    Genes Cells; 1999 Dec; 4(12):721-9. PubMed ID: 10620017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding.
    Minami M; Nakamura M; Emori Y; Minami Y
    Eur J Biochem; 2001 Apr; 268(8):2520-4. PubMed ID: 11298772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system.
    Kubo Y; Tsunehiro T; Nishikawa S; Nakai M; Ikeda E; Toh-e A; Morishima N; Shibata T; Endo T
    J Mol Biol; 1999 Feb; 286(2):447-64. PubMed ID: 9973563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the expression and function of the small heat shock protein gene, hsp27, in Xenopus laevis embryos.
    Tuttle AM; Gauley J; Chan N; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):112-21. PubMed ID: 17267255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding.
    Minami Y; Kawasaki H; Minami M; Tanahashi N; Tanaka K; Yahara I
    J Biol Chem; 2000 Mar; 275(12):9055-61. PubMed ID: 10722756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate.
    Thulasiraman V; Matts RL
    Biochemistry; 1996 Oct; 35(41):13443-50. PubMed ID: 8873613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent chaperoning activity of reticulocyte lysate.
    Schumacher RJ; Hurst R; Sullivan WP; McMahon NJ; Toft DO; Matts RL
    J Biol Chem; 1994 Apr; 269(13):9493-9. PubMed ID: 8144534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70.
    Terada K; Mori M
    J Biol Chem; 2000 Aug; 275(32):24728-34. PubMed ID: 10816573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel function of the C-terminal region of the Hsp110 family member Osp94 in unfolded protein refolding.
    Kojima R; Takai S; Osada H; Yamamoto L; Furukawa M; Gullans SR
    J Cell Sci; 2022 Mar; 135(6):. PubMed ID: 35237814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery.
    Fernando P; Megeney LA; Heikkila JJ
    Exp Cell Res; 2003 Jun; 286(2):175-85. PubMed ID: 12749847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.