BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11892988)

  • 41. Heat-shock-induced assembly of Hsp30 family members into high molecular weight aggregates in Xenopus laevis cultured cells.
    Ohan NW; Tam Y; Heikkila JJ
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Feb; 119(2):381-9. PubMed ID: 9629671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The molecular chaperone Hsc70 from a eurythermal marine goby exhibits temperature insensitivity during luciferase refolding assays.
    Zippay ML; Place SP; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 May; 138(1):1-7. PubMed ID: 15165564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human DnaJ homologue dj2 facilitates mitochondrial protein import and luciferase refolding.
    Terada K; Kanazawa M; Bukau B; Mori M
    J Cell Biol; 1997 Dec; 139(5):1089-95. PubMed ID: 9382858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding.
    Freeman BC; Morimoto RI
    EMBO J; 1996 Jun; 15(12):2969-79. PubMed ID: 8670798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2.
    Uma S; Thulasiraman V; Matts RL
    Mol Cell Biol; 1999 Sep; 19(9):5861-71. PubMed ID: 10454533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV
    Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding.
    Krzewska J; Langer T; Liberek K
    FEBS Lett; 2001 Jan; 489(1):92-6. PubMed ID: 11231020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of mutating arginine-469 on the substrate binding and refolding activities of 70-kDa heat shock cognate protein.
    Chang TC; Hsiao CD; Wu SJ; Wang C
    Arch Biochem Biophys; 2001 Feb; 386(1):30-6. PubMed ID: 11360998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms.
    Frydman J; Hartl FU
    Science; 1996 Jun; 272(5267):1497-502. PubMed ID: 8633246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40.
    Li J; Sha B
    Biochem J; 2005 Mar; 386(Pt 3):453-60. PubMed ID: 15500443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo.
    Forreiter C; Kirschner M; Nover L
    Plant Cell; 1997 Dec; 9(12):2171-81. PubMed ID: 9437862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GroEL chaperone binding to beetle luciferases and the implications for refolding when co-expressed.
    Venkatesh B; Arifuzzaman M; Mori H; Taguchi T; Ohmiya Y
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2096-103. PubMed ID: 15502355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components.
    Nimmesgern E; Hartl FU
    FEBS Lett; 1993 Sep; 331(1-2):25-30. PubMed ID: 8104824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms.
    Angelidis CE; Lazaridis I; Pagoulatos GN
    Eur J Biochem; 1999 Jan; 259(1-2):505-12. PubMed ID: 9914533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos.
    Lang L; Miskovic D; Fernando P; Heikkila JJ
    Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional characterisation of the chaperones DnaK, DnaJ, and GrpE from Clostridium acetobutylicum.
    Rüngeling E; Laufen T; Bahl H
    FEMS Microbiol Lett; 1999 Jan; 170(1):119-23. PubMed ID: 9919660
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular localization of Xenopus small heat shock protein, hsp30, in A6 kidney epithelial cells.
    Gellalchew M; Heikkila JJ
    Cell Biol Int; 2005 Mar; 29(3):221-7. PubMed ID: 15893480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. alpha-crystallin prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature the stabilized partially denatured protein in an ATP-dependent manner.
    Wang K; Spector A
    Eur J Biochem; 2000 Aug; 267(15):4705-12. PubMed ID: 10903503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage.
    Schröder H; Langer T; Hartl FU; Bukau B
    EMBO J; 1993 Nov; 12(11):4137-44. PubMed ID: 7900997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding.
    Török Z; Goloubinoff P; Horváth I; Tsvetkova NM; Glatz A; Balogh G; Varvasovszki V; Los DA; Vierling E; Crowe JH; Vigh L
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3098-103. PubMed ID: 11248038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.