BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11893021)

  • 1. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology.
    Joshi M; Fehlings MG
    J Neurotrauma; 2002 Feb; 19(2):175-90. PubMed ID: 11893021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 2. Quantitative neuroanatomical assessment and analysis of the relationships between axonal tracts, residual tissue, and locomotor recovery.
    Joshi M; Fehlings MG
    J Neurotrauma; 2002 Feb; 19(2):191-203. PubMed ID: 11893022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further Standardization in the Aneurysm Clip: The Effects of Occlusal Depth on the Outcome of Spinal Cord Injury in Rats.
    Rong H; Liu Y; Zhao Z; Feng J; Sun R; Ma Z; Gu X
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E126-E131. PubMed ID: 28604493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations.
    von Euler M; Seiger A; Sundström E
    Exp Neurol; 1997 Jun; 145(2 Pt 1):502-10. PubMed ID: 9217086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A graded forceps crush spinal cord injury model in mice.
    Plemel JR; Duncan G; Chen KW; Shannon C; Park S; Sparling JS; Tetzlaff W
    J Neurotrauma; 2008 Apr; 25(4):350-70. PubMed ID: 18373484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of timing of decompression on neurologic recovery and histopathologic findings after spinal cord compression in a rat model.
    Jazayeri SB; Firouzi M; Abdollah Zadegan S; Saeedi N; Pirouz E; Nategh M; Jahanzad I; Mohebbi Ashtiani A; Rahimi-Movaghar V
    Acta Med Iran; 2013 Aug; 51(7):431-7. PubMed ID: 23945885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly reproducible mouse model of compression spinal cord injury.
    Marques SA; de Almeida FM; Mostacada K; Martinez AM
    Methods Mol Biol; 2014; 1162():149-56. PubMed ID: 24838965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord.
    Weaver LC; Verghese P; Bruce JC; Fehlings MG; Krenz NR; Marsh DR
    J Neurotrauma; 2001 Oct; 18(10):1107-19. PubMed ID: 11686496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A remotely controlled model of spinal cord compression injury in mice: toward real-time analysis.
    Kouyoumdjian P; Lonjon N; Prieto M; Haton H; Privat A; Asencio G; Perrin FE; Gaviria M
    J Neurosurg Spine; 2009 Oct; 11(4):461-70. PubMed ID: 19929343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury.
    de Almeida FM; Marques SA; Ramalho Bdos S; Rodrigues RF; Cadilhe DV; Furtado D; Kerkis I; Pereira LV; Rehen SK; Martinez AM
    J Neurotrauma; 2011 Sep; 28(9):1939-49. PubMed ID: 21609310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exacerbation of spinal cord injury due to static compression occurring early after onset.
    Swartz KR; Scheff NN; Roberts KN; Fee DB
    J Neurosurg Spine; 2009 Nov; 11(5):570-4. PubMed ID: 19929360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment.
    Marques SA; Garcez VF; Del Bel EA; Martinez AM
    J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mouse model of graded contusive spinal cord injury.
    Kuhn PL; Wrathall JR
    J Neurotrauma; 1998 Feb; 15(2):125-40. PubMed ID: 9512088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury.
    Marques SA; Almeida FM; Fernandes AM; dos Santos Souza C; Cadilhe DV; Rehen SK; Martinez AM
    Brain Res; 2010 Aug; 1349():115-28. PubMed ID: 20599835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a mouse locomotor rating system to evaluate compression-induced spinal cord injury: correlation of locomotor and morphological injury indices.
    Li Y; Oskouian RJ; Day YJ; Kern JA; Linden J
    J Neurosurg Spine; 2006 Feb; 4(2):165-73. PubMed ID: 16506485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model.
    Zhang Y; Zhang L; Shen J; Chen C; Mao Z; Li W; Gan WB; Tang P
    Spine (Phila Pa 1976); 2014 Apr; 39(8):E493-9. PubMed ID: 24480947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury.
    Forgione N; Chamankhah M; Fehlings MG
    J Neurotrauma; 2017 Mar; 34(6):1227-1239. PubMed ID: 27931169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury.
    Mostacada K; Oliveira FL; Villa-Verde DM; Martinez AM
    Exp Neurol; 2015 Sep; 271():390-400. PubMed ID: 26183316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental modeling of spinal cord injury: characterization of a force-defined injury device.
    Scheff SW; Rabchevsky AG; Fugaccia I; Main JA; Lumpp JE
    J Neurotrauma; 2003 Feb; 20(2):179-93. PubMed ID: 12675971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.