These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11893510)

  • 1. Circular proteins--no end in sight.
    Trabi M; Craik DJ
    Trends Biochem Sci; 2002 Mar; 27(3):132-8. PubMed ID: 11893510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cyclotides: novel macrocyclic peptides as scaffolds in drug design.
    Craik DJ; Simonsen S; Daly NL
    Curr Opin Drug Discov Devel; 2002 Mar; 5(2):251-60. PubMed ID: 11926131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1.
    Daly NL; Love S; Alewood PF; Craik DJ
    Biochemistry; 1999 Aug; 38(32):10606-14. PubMed ID: 10441158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyclic permutants of naturally occurring cyclic proteins. Characterization of cystine knot and beta-sheet formation in the macrocyclic polypeptide kalata B1.
    Daly NL; Craik DJ
    J Biol Chem; 2000 Jun; 275(25):19068-75. PubMed ID: 10747913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular beta-lactamase: stability enhancement by cyclizing the backbone.
    Iwai H; Plückthun A
    FEBS Lett; 1999 Oct; 459(2):166-72. PubMed ID: 10518012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of the cyclotide palicourein: implications for the development of a pharmaceutical framework.
    Barry DG; Daly NL; Bokesch HR; Gustafson KR; Craik DJ
    Structure; 2004 Jan; 12(1):85-94. PubMed ID: 14725768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of naturally occurring circular proteins from bacteria.
    Craik DJ; Daly NL; Saska I; Trabi M; Rosengren KJ
    J Bacteriol; 2003 Jul; 185(14):4011-21. PubMed ID: 12837774
    [No Abstract]   [Full Text] [Related]  

  • 9. Circular proteins and mechanisms of cyclization.
    Conlan BF; Gillon AD; Craik DJ; Anderson MA
    Biopolymers; 2010; 94(5):573-83. PubMed ID: 20564019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naturally occurring circular proteins: distribution, biosynthesis and evolution.
    Cascales L; Craik DJ
    Org Biomol Chem; 2010 Nov; 8(22):5035-47. PubMed ID: 20835453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity.
    Barry DG; Daly NL; Clark RJ; Sando L; Craik DJ
    Biochemistry; 2003 Jun; 42(22):6688-95. PubMed ID: 12779323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular micro-proteins and mechanisms of cyclization.
    Conlan BF; Anderson MA
    Curr Pharm Des; 2011 Dec; 17(38):4318-28. PubMed ID: 22204430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical synthesis and biosynthesis of the cyclotide family of circular proteins.
    Gunasekera S; Daly NL; Anderson MA; Craik DJ
    IUBMB Life; 2006 Sep; 58(9):515-24. PubMed ID: 17002979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.
    Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L
    Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins.
    Clark RJ; Craik DJ
    Biopolymers; 2010; 94(4):414-22. PubMed ID: 20593458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.
    Stanger K; Maurer T; Kaluarachchi H; Coons M; Franke Y; Hannoush RN
    FEBS Lett; 2014 Nov; 588(23):4487-96. PubMed ID: 25448598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and applications of the plant cyclotides.
    Craik DJ
    Toxicon; 2010 Dec; 56(7):1092-102. PubMed ID: 20219513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1.
    Saether O; Craik DJ; Campbell ID; Sletten K; Juul J; Norman DG
    Biochemistry; 1995 Apr; 34(13):4147-58. PubMed ID: 7703226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.
    Poth AG; Colgrave ML; Philip R; Kerenga B; Daly NL; Anderson MA; Craik DJ
    ACS Chem Biol; 2011 Apr; 6(4):345-55. PubMed ID: 21194241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twists, knots, and rings in proteins. Structural definition of the cyclotide framework.
    Rosengren KJ; Daly NL; Plan MR; Waine C; Craik DJ
    J Biol Chem; 2003 Mar; 278(10):8606-16. PubMed ID: 12482868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.