These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 11893743)
1. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. Jackson MD; Denu JM J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743 [TBL] [Abstract][Full Text] [Related]
2. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Tanner KG; Landry J; Sternglanz R; Denu JM Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374 [TBL] [Abstract][Full Text] [Related]
3. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793 [TBL] [Abstract][Full Text] [Related]
4. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Sauve AA; Celic I; Avalos J; Deng H; Boeke JD; Schramm VL Biochemistry; 2001 Dec; 40(51):15456-63. PubMed ID: 11747420 [TBL] [Abstract][Full Text] [Related]
5. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Tanny JC; Moazed D Proc Natl Acad Sci U S A; 2001 Jan; 98(2):415-20. PubMed ID: 11134535 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. Zhao K; Harshaw R; Chai X; Marmorstein R Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415 [TBL] [Abstract][Full Text] [Related]
7. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Landry J; Slama JT; Sternglanz R Biochem Biophys Res Commun; 2000 Nov; 278(3):685-90. PubMed ID: 11095969 [TBL] [Abstract][Full Text] [Related]
8. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Sauve AA; Schramm VL Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for the NAD-dependent deacetylase mechanism of Sir2. Chang JH; Kim HC; Hwang KY; Lee JW; Jackson SP; Bell SD; Cho Y J Biol Chem; 2002 Sep; 277(37):34489-98. PubMed ID: 12091395 [TBL] [Abstract][Full Text] [Related]
10. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Borra MT; Langer MR; Slama JT; Denu JM Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996 [TBL] [Abstract][Full Text] [Related]
12. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases. Khan AN; Lewis PN J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic activities of Sir2 and chromatin silencing. Moazed D Curr Opin Cell Biol; 2001 Apr; 13(2):232-8. PubMed ID: 11248558 [TBL] [Abstract][Full Text] [Related]
14. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Liou GG; Tanny JC; Kruger RG; Walz T; Moazed D Cell; 2005 May; 121(4):515-527. PubMed ID: 15907466 [TBL] [Abstract][Full Text] [Related]
15. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing. Chou CC; Li YC; Gartenberg MR Mol Cell; 2008 Sep; 31(5):650-9. PubMed ID: 18775325 [TBL] [Abstract][Full Text] [Related]
16. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Sauve AA; Schramm VL Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610 [TBL] [Abstract][Full Text] [Related]
17. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Ono T; Kasamatsu A; Oka S; Moss J Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16687-91. PubMed ID: 17075046 [TBL] [Abstract][Full Text] [Related]
18. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Smith BC; Denu JM Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603 [TBL] [Abstract][Full Text] [Related]
19. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Tong L; Denu JM Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146 [TBL] [Abstract][Full Text] [Related]
20. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Landry J; Sutton A; Tafrov ST; Heller RC; Stebbins J; Pillus L; Sternglanz R Proc Natl Acad Sci U S A; 2000 May; 97(11):5807-11. PubMed ID: 10811920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]