BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11893766)

  • 1. Ion transport across posterior gills of hyperosmoregulating shore crabs (Carcinus maenas): amiloride blocks the cuticular Na(+) conductance and induces current-noise.
    Onken H; Riestenpatt S
    J Exp Biol; 2002 Feb; 205(Pt 4):523-31. PubMed ID: 11893766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus.
    Onken H; Tresguerres M; Luquet CM
    J Exp Biol; 2003 Mar; 206(Pt 6):1017-23. PubMed ID: 12582144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active absorption of Na+ and Cl- across the gill epithelium of the shore crab Carcinus maenas: voltage-clamp and ion-flux studies.
    Riestenpatt S; Onken H; Siebers D
    J Exp Biol; 1996; 199(Pt 7):1545-54. PubMed ID: 9319445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiology of posterior, NaCl-absorbing gills of Chasmagnathus granulatus: rapid responses to osmotic variations.
    Tresguerres M; Onken H; Pérez AF; Luquet CM
    J Exp Biol; 2003 Feb; 206(Pt 3):619-26. PubMed ID: 12502782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active NaCl absorption across split lamellae of posterior gills of the chinese crab Eriocheir sinensis: stimulation by eyestalk extract.
    Onken H; Schöbel A; Kraft J; Putzenlechner M
    J Exp Biol; 2000 Apr; 203(Pt 8):1373-81. PubMed ID: 10729285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invertebrate epithelial Na+ channels: amiloride-induced current-noise in crab gill.
    Zeiske W; Onken H; Schwarz HJ; Graszynski K
    Biochim Biophys Acta; 1992 Apr; 1105(2):245-52. PubMed ID: 1316781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab, Dilocarcinus pagei (Decapoda, Trichodactylidae).
    Weihrauch D; McNamara JC; Towle DW; Onken H
    J Exp Biol; 2004 Dec; 207(Pt 26):4623-31. PubMed ID: 15579558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperosmoregulation in the red freshwater crab Dilocarcinus pagei (Brachyura, Trichodactylidae): structural and functional asymmetries of the posterior gills.
    Onken H; McNamara JC
    J Exp Biol; 2002 Jan; 205(Pt 2):167-75. PubMed ID: 11821483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia attenuate ionic transport in the isolated gill epithelium of Carcinus maenas.
    Lucu Č
    J Comp Physiol B; 2020 Jul; 190(4):391-401. PubMed ID: 32333115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepithelial potential differences and Na(+) flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity.
    Luquet CM; Postel U; Halperin J; Urcola MR; Marques R; Siebers D
    J Exp Biol; 2002 Jan; 205(Pt 1):71-7. PubMed ID: 11818413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine.
    Handy RD; Eddy FB; Baines H
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):104-15. PubMed ID: 12421542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport in rat antral mucosa in vitro: general characteristics.
    Bakos P; Jezová D
    Gen Physiol Biophys; 1995 Dec; 14(6):473-90. PubMed ID: 8773490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for apical sodium channels in frog lung epithelial cells.
    Fischer H; Van Driessche W; Clauss W
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C764-71. PubMed ID: 2539725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and anion transport across the avian uterine (shell gland) epithelium.
    Vetter AE; O'Grady SM
    J Exp Biol; 2005 Feb; 208(Pt 3):479-86. PubMed ID: 15671336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion transport across leech integument. I. Electrogenic Na+ transport and current fluctuation analysis of the apical Na+ channel.
    Weber WM; Dannenmaier B; Clauss W
    J Comp Physiol B; 1993; 163(2):153-9. PubMed ID: 8391551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ions substitutions and of inhibitors on transepithelial potential difference and sodium fluxes in perfused gills of the crab Pachygrapsus marmoratus.
    Pierrot C; Pequeux A; Thuet P
    Arch Physiol Biochem; 1995 Aug; 103(4):466-75. PubMed ID: 8548485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-ATPase and functional microtubules.
    Weihrauch D; Ziegler A; Siebers D; Towle DW
    J Exp Biol; 2002 Sep; 205(Pt 18):2765-75. PubMed ID: 12177142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.
    Degnan KJ; Karnaky KJ; Zadunaisky JA
    J Physiol; 1977 Sep; 271(1):155-91. PubMed ID: 915831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium transport in the hen lower intestine. induction of sodium sites in the brush border by a low sodium diet.
    Bindslev N
    J Physiol; 1979 Mar; 288():449-66. PubMed ID: 469729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.