These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11894090)

  • 1. Strong emission of methyl chloride from tropical plants.
    Yokouchi Y; Ikeda M; Inuzuka Y; Yukawa T
    Nature; 2002 Mar; 416(6877):163-5. PubMed ID: 11894090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strong source of methyl chloride to the atmosphere from tropical coastal land.
    Yokouchi Y; Noijiri Y; Barrie LA; Toom-Sauntry D; Machida T; Inuzuka Y; Akimoto H; Li HJ; Fujinuma Y; Aoki S
    Nature; 2000 Jan; 403(6767):295-8. PubMed ID: 10659845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget.
    Harper DB; Hamilton JT; Ducrocq V; Kennedy JT; Downey A; Kalin RM
    Chemosphere; 2003 Jul; 52(2):433-6. PubMed ID: 12738266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of methyl chloride-emitting plants and atmospheric measurements on a subtropical island.
    Yokouchi Y; Saito T; Ishigaki C; Aramoto M
    Chemosphere; 2007 Sep; 69(4):549-53. PubMed ID: 17462706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study of methyl chloride emissions from tropical woodrot fungi.
    Moore RM; Gut A; Andreae MO
    Chemosphere; 2005 Jan; 58(2):221-5. PubMed ID: 15571754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane emissions from terrestrial plants under aerobic conditions.
    Keppler F; Hamilton JT; Brass M; Röckmann T
    Nature; 2006 Jan; 439(7073):187-91. PubMed ID: 16407949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl chloride emissions from halophyte leaf litter: dependence on temperature and chloride content.
    Derendorp L; Wishkerman A; Keppler F; McRoberts C; Holzinger R; Röckmann T
    Chemosphere; 2012 Apr; 87(5):483-9. PubMed ID: 22225707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.
    Richey JE; Melack JM; Aufdenkampe AK; Ballester VM; Hess LL
    Nature; 2002 Apr; 416(6881):617-20. PubMed ID: 11948346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric chemistry: are plant emissions green?
    Guenther A
    Nature; 2008 Apr; 452(7188):701-2. PubMed ID: 18401395
    [No Abstract]   [Full Text] [Related]  

  • 11. Efficient atmospheric cleansing of oxidized organic trace gases by vegetation.
    Karl T; Harley P; Emmons L; Thornton B; Guenther A; Basu C; Turnipseed A; Jardine K
    Science; 2010 Nov; 330(6005):816-9. PubMed ID: 20966216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric oxidation capacity sustained by a tropical forest.
    Lelieveld J; Butler TM; Crowley JN; Dillon TJ; Fischer H; Ganzeveld L; Harder H; Lawrence MG; Martinez M; Taraborrelli D; Williams J
    Nature; 2008 Apr; 452(7188):737-40. PubMed ID: 18401407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halocarbons produced by natural oxidation processes during degradation of organic matter.
    Keppler F; Eiden R; Niedan V; Pracht J; Schöler HF
    Nature; 2000 Jan; 403(6767):298-301. PubMed ID: 10659846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chemistry. Better budgets for methyl halides.
    Butler JH
    Nature; 2000 Jan; 403(6767):260-1. PubMed ID: 10681236
    [No Abstract]   [Full Text] [Related]  

  • 15. Contribution of anthropogenic and natural sources to atmospheric methane variability.
    Bousquet P; Ciais P; Miller JB; Dlugokencky EJ; Hauglustaine DA; Prigent C; Van der Werf GR; Peylin P; Brunke EG; Carouge C; Langenfelds RL; Lathière J; Papa F; Ramonet M; Schmidt M; Steele LP; Tyler SC; White J
    Nature; 2006 Sep; 443(7110):439-43. PubMed ID: 17006511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.
    Ahlers J; Regelmann J; Riedhammer C
    Chemosphere; 2003 Jul; 52(2):531-7. PubMed ID: 12738278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing boreal methane sources and constant biomass burning during the last termination.
    Fischer H; Behrens M; Bock M; Richter U; Schmitt J; Loulergue L; Chappellaz J; Spahni R; Blunier T; Leuenberger M; Stocker TF
    Nature; 2008 Apr; 452(7189):864-7. PubMed ID: 18421351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission of methyl bromide from biomass burning.
    Manö S; Andreae MO
    Science; 1994 Mar; 263(5151):1255-7. PubMed ID: 17817427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and reactivity of NMHCs and VOCs in the atmosphere: a review.
    Kansal A
    J Hazard Mater; 2009 Jul; 166(1):17-26. PubMed ID: 19136203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.