These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 1189460)
1. Species differences in the metabolism of palmotoxins B0 and G0 in vitro. Bassir O; Emerole O Xenobiotica; 1975 Nov; 5(11):649-55. PubMed ID: 1189460 [TBL] [Abstract][Full Text] [Related]
2. Species differences in the metabolism of aflatoxin B1. Emafo PO Afr J Med Med Sci; 1976 Mar; 5(1):55-62. PubMed ID: 829706 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of palmotoxins B0 and G0 in vitro. Bassir O; Emerole GO Eur J Biochem; 1974 Sep; 47(2):321-4. PubMed ID: 4213246 [No Abstract] [Full Text] [Related]
4. Comparative in vitro metabolisms of dimethylnitrosamine in animals of six different species. Maduagwu EN; Bassir O J Environ Pathol Toxicol; 1980 Nov; 4(5-6):229-35. PubMed ID: 7217848 [TBL] [Abstract][Full Text] [Related]
5. Comparative oxidative metabolism of aflatoxin B1 and palmotoxins B0 and G0 by rat liver microsomal fractions. Bassir O; Emerole BO Xenobiotica; 1973 Apr; 3(4):201-5. PubMed ID: 4147913 [No Abstract] [Full Text] [Related]
6. The cytochrome P-450-dependent hydroxylation of T-2 toxin in various animal species. Kobayashi J; Horikoshi T; Ryu JC; Tashiro F; Ishii K; Ueno Y Food Chem Toxicol; 1987 Jul; 25(7):539-44. PubMed ID: 3623344 [TBL] [Abstract][Full Text] [Related]
7. Oxidative metabolism of aflatoxin B 1 by mammalian liver slices and microsomes. Bassir O; Emafo PO Biochem Pharmacol; 1970 May; 19(5):1681-7. PubMed ID: 5513948 [No Abstract] [Full Text] [Related]
8. Species comparison of in vitro metabolism of aflatoxin B1. Roebuck BD; Wogan GN Cancer Res; 1977 Jun; 37(6):1649-56. PubMed ID: 404034 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of aflatoxin in susceptible and resistant animal species. Patterson DS; Allcroft R Food Cosmet Toxicol; 1970 Feb; 8(1):43-53. PubMed ID: 4392273 [No Abstract] [Full Text] [Related]
10. The oxidative metabolism of fenbendazole: a comparative study. Short CR; Flory W; Hsieh LC; Barker SA J Vet Pharmacol Ther; 1988 Mar; 11(1):50-5. PubMed ID: 3379664 [TBL] [Abstract][Full Text] [Related]
11. Comparative in vitro metabolism of T-2 toxin by hepatic microsomes prepared from phenobarbital-induced or control rats, mice, rabbits and chickens. Knupp CA; Swanson SP; Buck WB Food Chem Toxicol; 1987 Nov; 25(11):859-65. PubMed ID: 3692389 [TBL] [Abstract][Full Text] [Related]
12. Microsomal and cytosolic biotransformation of aflatoxin B1 in four poultry species. Lozano MC; Diaz GJ Br Poult Sci; 2006 Dec; 47(6):734-41. PubMed ID: 17190682 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the effects of aflatoxin B1 on the livers of rats and duck hepatitis B virus-infected and noninfected ducks. Seawright AA; Snowden RT; Olubuyide IO; Riley J; Judah DJ; Neal GE Hepatology; 1993 Jul; 18(1):188-97. PubMed ID: 8325610 [TBL] [Abstract][Full Text] [Related]
14. Species differences in the hepatic and intestinal metabolism of cyclosporine. Whalen RD; Tata PN; Burckart GJ; Venkataramanan R Xenobiotica; 1999 Jan; 29(1):3-9. PubMed ID: 10078836 [TBL] [Abstract][Full Text] [Related]
15. Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin. Eberhart DC; Gemzik B; Halvorson MR; Parkinson A Mol Pharmacol; 1991 Nov; 40(5):859-67. PubMed ID: 1944247 [TBL] [Abstract][Full Text] [Related]
16. Microsomal cytochrome P450-dependent steroid metabolism in male sheep liver. Quantitative importance of 6 beta-hydroxylation and evidence for the involvement of a P450 from the IIIA subfamily in the pathway. Murray M J Steroid Biochem Mol Biol; 1991 May; 38(5):611-9. PubMed ID: 2039754 [TBL] [Abstract][Full Text] [Related]
17. In vitro metabolism of penicillium roqueforti toxin (PRT) and a structurally related compound, eremofortin A, by rat liver. Cacan M; Moreau S; Tailliez R Toxicology; 1977 Oct; 8(2):205-12. PubMed ID: 22144 [No Abstract] [Full Text] [Related]
18. Inter-species comparison of liver and small intestinal microsomal metabolism of fluoranthene. Walker SA; Whitten LB; Seals GB; Lee WE; Archibong AE; Ramesh A Food Chem Toxicol; 2006 Mar; 44(3):380-7. PubMed ID: 16182425 [TBL] [Abstract][Full Text] [Related]
19. In vitro formation of selegiline-N-oxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog. Lévai F; Fejér E; Szeleczky G; Szabó A; Eros-Takácsy T; Hajdu F; Szebeni G; Szatmári I; Hermecz I Eur J Drug Metab Pharmacokinet; 2004; 29(3):169-78. PubMed ID: 15537168 [TBL] [Abstract][Full Text] [Related]