These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11895076)

  • 21. Interaction of physiological mechanisms in control of muscle glucose uptake.
    Wasserman DH; Ayala JE
    Clin Exp Pharmacol Physiol; 2005 Apr; 32(4):319-23. PubMed ID: 15810999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation.
    Hoy AJ; Bruce CR; Cederberg A; Turner N; James DE; Cooney GJ; Kraegen EW
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1358-64. PubMed ID: 17785505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of GLP-1 and exendins action upon glucose transport and metabolism in type 2 diabetic rat skeletal muscle.
    Arnés L; González N; Tornero-Esteban P; Sancho V; Acitores A; Valverde I; Delgado E; Villanueva-Peñacarrillo ML
    Int J Mol Med; 2008 Jul; 22(1):127-32. PubMed ID: 18575785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation.
    Moon B; Kwan JJ; Duddy N; Sweeney G; Begum N
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E106-15. PubMed ID: 12618360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition.
    Henriksen EJ; Jacob S
    J Cell Physiol; 2003 Jul; 196(1):171-9. PubMed ID: 12767053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delayed response of insulin-stimulated fluorine-18 deoxyglucose uptake in glucose transporter-4-null mice hearts.
    Simões MV; Egert S; Ziegler S; Miyagawa M; Reder S; Lehner T; Nguyen N; Charron MJ; Schwaiger M
    J Am Coll Cardiol; 2004 May; 43(9):1690-7. PubMed ID: 15120832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle.
    Glund S; Deshmukh A; Long YC; Moller T; Koistinen HA; Caidahl K; Zierath JR; Krook A
    Diabetes; 2007 Jun; 56(6):1630-7. PubMed ID: 17363741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correction for the effect of rising plasma glucose levels on quantification of MR(glc) with FDG-PET.
    Dunn JT; Anthony K; Amiel SA; Marsden PK
    J Cereb Blood Flow Metab; 2009 May; 29(5):1059-67. PubMed ID: 19293824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET.
    Kelley DE; Williams KV; Price JC
    Am J Physiol; 1999 Aug; 277(2):E361-9. PubMed ID: 10444433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging.
    Goodpaster BH; Bertoldo A; Ng JM; Azuma K; Pencek RR; Kelley C; Price JC; Cobelli C; Kelley DE
    Diabetes; 2014 Mar; 63(3):1058-68. PubMed ID: 24222345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of positron emission tomography for the assessment of skeletal muscle glucose metabolism.
    Selberg O; Müller MJ; van den Hoff J; Burchert W
    Nutrition; 2002 Apr; 18(4):323-8. PubMed ID: 11934545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of positron emission tomography (PET) in the assessment of skeletal muscle glucose metabolism.
    Müller MJ; Selberg O; Burchert W
    Z Ernahrungswiss; 1997 Dec; 36(4):359-63. PubMed ID: 9467235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of glucose transport and phosphorylation in human skeletal muscle using FDG PET.
    Reinhardt M; Beu M; Vosberg H; Herzog H; Hübinger A; Reinauer H; Müller-Gärtner HW
    J Nucl Med; 1999 Jun; 40(6):977-85. PubMed ID: 10452314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model.
    Bertoldo A; Peltoniemi P; Oikonen V; Knuuti J; Nuutila P; Cobelli C
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E524-36. PubMed ID: 11500308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps.
    Perriott LM; Kono T; Whitesell RR; Knobel SM; Piston DW; Granner DK; Powers AC; May JM
    Am J Physiol Endocrinol Metab; 2001 Jul; 281(1):E72-80. PubMed ID: 11404224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperglycemia-induced stimulation of glucose transport in skeletal muscle measured by PET-[18F]6FDG and [18F]2FDG.
    Huang HM; Chandramouli V; Ismail-Beigi F; Muzic RF
    Physiol Meas; 2012 Oct; 33(10):1661-73. PubMed ID: 22986442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT.
    Cochran BJ; Ryder WJ; Parmar A; Klaeser K; Reilhac A; Angelis GI; Meikle SR; Barter PJ; Rye KA
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of positron emission tomography in the assessment of skeletal muscle and tendon metabolism and perfusion.
    Nuutila P; Kalliokoski K
    Scand J Med Sci Sports; 2000 Dec; 10(6):346-50. PubMed ID: 11085562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose transport and phosphorylation: which is rate limiting for brain glucose utilization?
    Pardridge WM
    Ann Neurol; 1994 May; 35(5):511-2. PubMed ID: 8179296
    [No Abstract]   [Full Text] [Related]  

  • 40. A new Michaelis-Menten-based kinetic model for transport and phosphorylation of glucose and its analogs in skeletal muscle.
    Huang HM; Ismail-Beigi F; Muzic RF
    Med Phys; 2011 Aug; 38(8):4587-99. PubMed ID: 21928632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.