BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11896274)

  • 1. Chromium isotopes and the fate of hexavalent chromium in the environment.
    Ellis AS; Johnson TM; Bullen TD
    Science; 2002 Mar; 295(5562):2060-2. PubMed ID: 11896274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental chemistry. Tracking hexavalent Cr in groundwater.
    Blowes D
    Science; 2002 Mar; 295(5562):2024-5. PubMed ID: 11896259
    [No Abstract]   [Full Text] [Related]  

  • 3. Cr stable isotopes in Snake River Plain aquifer groundwater: evidence for natural reduction of dissolved Cr(VI).
    Raddatz AL; Johnson TM; McLing TL
    Environ Sci Technol; 2011 Jan; 45(2):502-7. PubMed ID: 21121656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects.
    Ellis AS; Johnson TM; Bullen TD
    Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values.
    Novak M; Chrastny V; Cadkova E; Farkas J; Bullen TD; Tylcer J; Szurmanova Z; Cron M; Prechova E; Curik J; Stepanova M; Pasava J; Erbanova L; Houskova M; Puncochar K; Hellerich LA
    Environ Sci Technol; 2014 Jun; 48(11):6089-96. PubMed ID: 24779992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.
    Basu A; Johnson TM
    Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment.
    Hellerich LA; Nikolaidis NP
    Water Res; 2005 Aug; 39(13):2851-68. PubMed ID: 15993460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotope evidence of hexavalent chromium stability in ground water samples.
    Čadková E; Chrastný V
    Chemosphere; 2015 Nov; 138():74-80. PubMed ID: 26037819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions.
    Jamieson-Hanes JH; Amos RT; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2015 May; 49(9):5467-75. PubMed ID: 25839086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor.
    Lu YZ; Chen GJ; Bai YN; Fu L; Qin LP; Zeng RJ
    Water Res; 2018 Mar; 130():263-270. PubMed ID: 29241112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium fractionation and speciation in natural waters.
    Pereira CD; Techy JG; Ganzarolli EM; Quináia SP
    J Environ Monit; 2012 May; 14(6):1559-64. PubMed ID: 22516973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dissolved oxygen on aqueous Cr(VI) removal by ferrous ion.
    Singh IB; Singh DR
    Environ Technol; 2002 Dec; 23(12):1347-53. PubMed ID: 12523506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the toxicity of chromium in sediments.
    Berry WJ; Boothman WS; Serbst JR; Edwards PA
    Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of iron in hexavalent chromium reduction by municipal landfill leachate.
    Li Y; Low GK; Scott JA; Amal R
    J Hazard Mater; 2009 Jan; 161(2-3):657-62. PubMed ID: 18486329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.
    Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T
    J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides.
    Graham AM; Bouwer EJ
    Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.