BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11896291)

  • 1. Structural determinants of fluorochemical-induced mitochondrial dysfunction.
    Starkov AA; Wallace KB
    Toxicol Sci; 2002 Apr; 66(2):244-52. PubMed ID: 11896291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial permeability transition as the critical target of N-acetyl perfluorooctane sulfonamide toxicity in vitro.
    O'Brien TM; Wallace KB
    Toxicol Sci; 2004 Nov; 82(1):333-40. PubMed ID: 15310855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfluorooctanoate, perflourooctanesulfonate, and N-ethyl perfluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis.
    Berthiaume J; Wallace KB
    Toxicol Lett; 2002 Mar; 129(1-2):23-32. PubMed ID: 11879971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro.
    O'Brien TM; Oliveira PJ; Wallace KB
    Toxicol Appl Pharmacol; 2008 Mar; 227(2):184-95. PubMed ID: 18048072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esterification prevents induction of the mitochondrial permeability transition by N-acetyl perfluorooctane sulfonamides.
    O'Brien TM; Carlson RM; Oliveira PJ; Wallace KB
    Chem Res Toxicol; 2006 Oct; 19(10):1305-12. PubMed ID: 17040099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals.
    Shipley JM; Hurst CH; Tanaka SS; DeRoos FL; Butenhoff JL; Seacat AM; Waxman DJ
    Toxicol Sci; 2004 Jul; 80(1):151-60. PubMed ID: 15071170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of peroxisome proliferators on mitochondrial bioenergetics.
    Zhou S; Wallace KB
    Toxicol Sci; 1999 Mar; 48(1):82-9. PubMed ID: 10330687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and transport of perfluoro- and polyfluoroalkyl substances including perfluorooctane sulfonamides in a managed urban water body.
    Nguyen TV; Reinhard M; Chen H; Gin KY
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10382-10392. PubMed ID: 27146547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.
    Shabalina IG; Kalinovich AV; Cannon B; Nedergaard J
    Arch Toxicol; 2016 May; 90(5):1117-28. PubMed ID: 26041126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, elimination and biotransformation of N-ethyl perfluorooctane sulfonamide (N-EtFOSA) by the earthworms (Eisenia fetida) after in vivo and in vitro exposure.
    Zhao S; Wang B; Zhu L; Liang T; Chen M; Yang L; Lv J; Liu L
    Environ Pollut; 2018 Oct; 241():19-25. PubMed ID: 29793104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives.
    Mejia Avendaño S; Liu J
    Chemosphere; 2015 Jan; 119():1084-1090. PubMed ID: 25460746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation, biodegradation and toxicological effects of N-ethyl perfluorooctane sulfonamidoethanol on the earthworms Eisenia fetida exposed to quartz sands.
    Zhao S; Liu T; Wang B; Fu J; Liang T; Zhong Z; Zhan J; Liu L
    Ecotoxicol Environ Saf; 2019 Oct; 181():138-145. PubMed ID: 31176248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c potentiates fatty acid-induced cyclosporin A-sensitive permeability transition in liver mitochondria.
    Amerkhanov ZG; Mokhova EN
    Biochemistry (Mosc); 1997 Dec; 62(12):1429-34. PubMed ID: 9481876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate laws and kinetic modeling of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) transformation by hydroxyl radical in aqueous solution.
    Nguyen TV; Reinhard M; Gin KY
    Water Res; 2013 May; 47(7):2241-50. PubMed ID: 23466034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450.
    Xu L; Krenitsky DM; Seacat AM; Butenhoff JL; Anders MW
    Chem Res Toxicol; 2004 Jun; 17(6):767-75. PubMed ID: 15206897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.
    Letcher RJ; Chu S; McKinney MA; Tomy GT; Sonne C; Dietz R
    Chemosphere; 2014 Oct; 112():225-31. PubMed ID: 25048910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of fluorochemicals with rat liver fatty acid-binding protein.
    Luebker DJ; Hansen KJ; Bass NM; Butenhoff JL; Seacat AM
    Toxicology; 2002 Jul; 176(3):175-85. PubMed ID: 12093614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic approach for the toxic effects of perfluorooctanoic acid on isolated rat liver and brain mitochondria.
    Mashayekhi V; Tehrani KH; Hashemzaei M; Tabrizian K; Shahraki J; Hosseini MJ
    Hum Exp Toxicol; 2015 Oct; 34(10):985-96. PubMed ID: 25586001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect photolysis of perfluorochemicals: hydroxyl radical-initiated oxidation of N-ethyl perfluorooctane sulfonamido acetate (N-EtFOSAA) and other perfluoroalkanesulfonamides.
    Plumlee MH; McNeill K; Reinhard M
    Environ Sci Technol; 2009 May; 43(10):3662-8. PubMed ID: 19544870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment.
    Ahrens L; Yeung LW; Taniyasu S; Lam PK; Yamashita N
    Chemosphere; 2011 Oct; 85(5):731-7. PubMed ID: 21742366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.