These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11896686)

  • 1. Modified guanines representing O(6)-alkylation by the cyclophosphamide metabolites acrolein and chloroacetaldehyde: synthesis, stability, and ab initio studies.
    Balu N; Gamcsik MP; Colvin ME; Colvin OM; Dolan ME; Ludeman SM
    Chem Res Toxicol; 2002 Mar; 15(3):380-7. PubMed ID: 11896686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro.
    Mills KA; Chess-Williams R; McDermott C
    Arch Toxicol; 2019 Nov; 93(11):3291-3303. PubMed ID: 31598736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of MGMT in protecting against cyclophosphamide-induced toxicity in cells and animals.
    Hansen RJ; Ludeman SM; Paikoff SJ; Pegg AE; Dolan ME
    DNA Repair (Amst); 2007 Aug; 6(8):1145-54. PubMed ID: 17485251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of N2,3-ethanoguanine in DNA after treatment with chloroacetaldehyde in vitro.
    Oesch F; Doerjer G
    Carcinogenesis; 1982; 3(6):663-5. PubMed ID: 7116560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrolein mercapturates: synthesis, characterization, and assessment of their role in the bladder toxicity of cyclophosphamide.
    Ramu K; Fraiser LH; Mamiya B; Ahmed T; Kehrer JP
    Chem Res Toxicol; 1995 Jun; 8(4):515-24. PubMed ID: 7548731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrolein and chloroacetaldehyde: an examination of the cell and cell-free biomarkers of toxicity.
    MacAllister SL; Martin-Brisac N; Lau V; Yang K; O'Brien PJ
    Chem Biol Interact; 2013 Feb; 202(1-3):259-66. PubMed ID: 23220588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemistry of the metabolites of cyclophosphamide.
    Ludeman SM
    Curr Pharm Des; 1999 Aug; 5(8):627-43. PubMed ID: 10469895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,3- vs 1,5-intramolecular alkylation reactions in isophosphoramide and phosphoramide mustards.
    Springer JB; Chang YH; Koo KI; Colvin OM; Colvin ME; Dolan ME; Delaney SM; Flowers JL; Ludeman SM
    Chem Res Toxicol; 2004 Sep; 17(9):1217-26. PubMed ID: 15377155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-7-Guanine Adduct of the Active Monoepoxide of Prodrug Treosulfan: First Synthesis, Characterization, and Decomposition Profile Under Physiological Conditions.
    Romański M; Girreser U; Teżyk A; Główka FK
    J Pharm Sci; 2018 Nov; 107(11):2927-2937. PubMed ID: 29960026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control?
    Freccero M; Gandolfi R; Sarzi-Amadè M
    J Org Chem; 2003 Aug; 68(16):6411-23. PubMed ID: 12895079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative toxicity of ifosfamide metabolites and protective effect of mesna and amifostine in cultured renal tubule cells.
    Zaki EL; Springate JE; Taub M
    Toxicol In Vitro; 2003 Aug; 17(4):397-402. PubMed ID: 12849722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct detection of the intracellular formation of carboxyphosphamides using nuclear magnetic resonance spectroscopy.
    Boal JH; Ludeman SM; Ho CK; Engel J; Niemeyer U
    Arzneimittelforschung; 1994 Jan; 44(1):84-93. PubMed ID: 8135883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkylating potential of α,β-unsaturated compounds.
    Manso JA; Camacho IF; Calle E; Casado J
    Org Biomol Chem; 2011 Sep; 9(18):6226-33. PubMed ID: 21773622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the in vivo formation of acrolein: 3-hydroxy-propylmercapturic acid as an index of cyclophosphamide (NSC-26271) activation.
    Alarcon RA
    Cancer Treat Rep; 1976 Apr; 60(4):327-35. PubMed ID: 1277208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroacetaldehyde: mode of antitumor action of the ifosfamide metabolite.
    Brüggemann SK; Radike K; Braasch K; Hinrichs J; Kisro J; Hagenah W; Peters SO; Wagner T
    Cancer Chemother Pharmacol; 2006 Feb; 57(3):349-56. PubMed ID: 16133533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells.
    Crook TR; Souhami RL; McLean AE
    Cancer Res; 1986 Oct; 46(10):5029-34. PubMed ID: 3463409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reactions of thiouridines and thiouracils with chloroacetaldehyde; mechanistic considerations.
    Krzyzosiak WJ; Biernat J; Ciesiołka J; Górnicki P; Wiewiórowski M
    Nucleic Acids Res; 1980 Feb; 8(4):861-73. PubMed ID: 7433118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of ifosfamide, cyclophosphamide and their metabolites in renal tubular cells in culture.
    Mohrmann M; Ansorge S; Schmich U; Schönfeld B; Brandis M
    Pediatr Nephrol; 1994 Apr; 8(2):157-63. PubMed ID: 7517170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of 4-hydroperoxycyclophosphamide and 4-hydroxycyclophosphamide to phosphoramide mustard and acrolein mediated by bifunctional catalysis.
    Low JE; Borch RF; Sladek NE
    Cancer Res; 1982 Mar; 42(3):830-7. PubMed ID: 7059981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents.
    Hartley JA; Gibson NW; Kohn KW; Mattes WB
    Cancer Res; 1986 Apr; 46(4 Pt 2):1943-7. PubMed ID: 3004713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.