These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11897052)

  • 1. Determination of ligand-MurB interactions by isothermal denaturation: application as a secondary assay to complement high throughput screening.
    Sarver RW; Rogers JM; Epps DE
    J Biomol Screen; 2002 Feb; 7(1):21-8. PubMed ID: 11897052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ligand affinity of proteins measured by isothermal denaturation kinetics.
    Epps DE; Sarver RW; Rogers JM; Herberg JT; Tomich PK
    Anal Biochem; 2001 May; 292(1):40-50. PubMed ID: 11319816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. Characterization of cold denaturation and urea-protein interactions.
    Neira JL; Gómez J
    Eur J Biochem; 2004 Jun; 271(11):2165-81. PubMed ID: 15153107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand binding affinity determined by temperature-dependent circular dichroism: cyclin-dependent kinase 2 inhibitors.
    Mayhood TW; Windsor WT
    Anal Biochem; 2005 Oct; 345(2):187-97. PubMed ID: 16140252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of amino acid residues essential for the active site of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Staphylococcus aureus.
    Nishida S; Kurokawa K; Matsuo M; Sakamoto K; Ueno K; Kita K; Sekimizu K
    J Biol Chem; 2006 Jan; 281(3):1714-24. PubMed ID: 16236703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and mutation site determination of the temperature-sensitive murB mutants of Staphylococcus aureus.
    Matsuo M; Kurokawa K; Nishida S; Li Y; Takimura H; Kaito C; Fukuhara N; Maki H; Miura K; Murakami K; Sekimizu K
    FEMS Microbiol Lett; 2003 May; 222(1):107-13. PubMed ID: 12757953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex.
    Fast J; Mossberg AK; Svanborg C; Linse S
    Protein Sci; 2005 Feb; 14(2):329-40. PubMed ID: 15659367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.
    Shapiro AB; Livchak S; Gao N; Whiteaker J; Thresher J; Jahić H; Huang J; Gu RF
    J Biomol Screen; 2012 Mar; 17(3):327-38. PubMed ID: 22068704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein.
    Zhang J; Matthews CR
    Biochemistry; 1998 Oct; 37(42):14891-9. PubMed ID: 9778365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding analysis and screening by chemical denaturation shift.
    Schön A; Brown RK; Hutchins BM; Freire E
    Anal Biochem; 2013 Dec; 443(1):52-7. PubMed ID: 23994566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of pitfalls in the analysis of heat capacity changes of beta-lactoglobulin A.
    van Teeffelen AM; Meinders MB; de Jongh HH
    Int J Biol Macromol; 2005 Oct; 37(1-2):28-34. PubMed ID: 16197991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of ligand binding by protein stabilization: comparison of ATLAS with biophysical and enzymatic methods.
    Thompson PA; Wang S; Howett LJ; Wang MM; Patel R; Averill A; Showalter RE; Li B; Appleman JR
    Assay Drug Dev Technol; 2008 Feb; 6(1):69-81. PubMed ID: 18336087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride.
    Blaber SI; Culajay JF; Khurana A; Blaber M
    Biophys J; 1999 Jul; 77(1):470-7. PubMed ID: 10388772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy.
    Le Bihan T; Gicquaud C
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1065-73. PubMed ID: 8352763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effect of VEGF glycosylation on glycosaminoglycan binding and protein unfolding.
    Brandner B; Kurkela R; Vihko P; Kungl AJ
    Biochem Biophys Res Commun; 2006 Feb; 340(3):836-9. PubMed ID: 16386708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural features of a hyperthermostable endo-beta-1,3-glucanase in solution and adsorbed on "invisible" particles.
    Koutsopoulos S; van der Oost J; Norde W
    Biophys J; 2005 Jan; 88(1):467-74. PubMed ID: 15516527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation.
    Swint L; Robertson AD
    Protein Sci; 1993 Dec; 2(12):2037-49. PubMed ID: 8298454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential scanning calorimetric and spectroscopic studies on the unfolding of Momordica charantia lectin. Similar modes of thermal and chemical denaturation.
    Kavitha M; Bobbili KB; Swamy MJ
    Biochimie; 2010 Jan; 92(1):58-64. PubMed ID: 19778578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV-Denaturation Assay to Assess Protein Photostability and Ligand-Binding Interactions Using the High Photon Flux of Diamond B23 Beamline for SRCD.
    Hussain R; Longo E; Siligardi G
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.