These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 11897053)
41. Function and mechanism of pyronaridine: a new inhibitor of P-glycoprotein-mediated multidrug resistance. Qi J; Yang CZ; Wang CY; Wang SB; Yang M; Wang JH Acta Pharmacol Sin; 2002 Jun; 23(6):544-50. PubMed ID: 12060530 [TBL] [Abstract][Full Text] [Related]
42. Flow cytometric monitoring of fluorescent drug retention and efflux. Krishan A; Hamelik RM Methods Mol Med; 2005; 111():149-66. PubMed ID: 15911978 [TBL] [Abstract][Full Text] [Related]
43. Multidrug resistance reversal in mouse lymphoma cells by heterocyclic compounds. Molnár J; Szabo D; Mándi Y; Mucsi I; Fischer J; Varga A; König S; Motohashi N Anticancer Res; 1998; 18(4C):3033-8. PubMed ID: 9713505 [TBL] [Abstract][Full Text] [Related]
44. Effect of hyperthermia on rhodamine 123 cytotoxicity in doxorubicin-sensitive and doxorubicin-resistant human breast carcinoma cell lines in vitro. Gritti A; Colombo A; Dasdia T; Melloni E; Marchesini R Int J Hyperthermia; 1993; 9(3):393-401. PubMed ID: 8515142 [TBL] [Abstract][Full Text] [Related]
45. Transport of LDS-751 from the cytoplasmic leaflet of the plasma membrane by the rhodamine-123-selective site of P-glycoprotein. Shapiro AB; Ling V Eur J Biochem; 1998 May; 254(1):181-8. PubMed ID: 9652412 [TBL] [Abstract][Full Text] [Related]
46. Functional study of multidrug resistance with fluorescent dyes. Limits of the assay for low levels of resistance and application in clinical samples. Canitrot Y; Lahmy S; Buquen JJ; Canitrot D; Lautier D Cancer Lett; 1996 Aug; 106(1):59-68. PubMed ID: 8827047 [TBL] [Abstract][Full Text] [Related]
47. Influence of dexniguldipine-HC1 on rhodamine-123 accumulation in a multidrug-resistant leukaemia cell line: comparison with other chemosensitisers. Boer R; Haas S; Schödl A Eur J Cancer; 1994; 30A(8):1117-23. PubMed ID: 7654442 [TBL] [Abstract][Full Text] [Related]
48. Effects of the mitochondrial probe rhodamine 123 and related analogs on the function and viability of pulsating myocardial cells in culture. Lampidis TJ; Salet C; Moreno G; Chen LB Agents Actions; 1984 Jun; 14(5-6):751-7. PubMed ID: 6475672 [TBL] [Abstract][Full Text] [Related]
49. Differential retention of rhodamine 123 by breast carcinoma and normal human mammary tissue. Dairkee SH; Hackett AJ Breast Cancer Res Treat; 1991 Mar; 18(1):57-61. PubMed ID: 1854980 [TBL] [Abstract][Full Text] [Related]
50. Relationship of mitochondrial function and cellular adenosine triphosphate levels to pMC540 and merodantoin cytotoxicity in MCF-7 human breast cancer cells. Gulliya KS; Sharma R; Liu HW; Arnold L; Matthews JL Anticancer Drugs; 1995 Aug; 6(4):545-52. PubMed ID: 7579558 [TBL] [Abstract][Full Text] [Related]
51. Photosensitizer accumulation in spontaneous multidrug resistant cells: a comparative study with Rhodamine 123, Rose Bengal acetate and Photofrine. Croce AC; Supino R; Lanza KS; Locatelli D; Baglioni P; Bottiroli G Photochem Photobiol Sci; 2002 Jan; 1(1):71-8. PubMed ID: 12659152 [TBL] [Abstract][Full Text] [Related]
52. In vitro photosensitizing properties of rhodamine 123 on different human tumor cell lines. Melloni E; Dasdia T; Fava G; Rocca E; Zunino F; Marchesini R Photochem Photobiol; 1988 Sep; 48(3):311-4. PubMed ID: 3222341 [No Abstract] [Full Text] [Related]
53. Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS. Bhattarai N; Chen M; L Pérez R; Ravula S; M Strongin R; McDonough K; M Warner I Molecules; 2020 Jul; 25(14):. PubMed ID: 32709149 [TBL] [Abstract][Full Text] [Related]
54. Rapid functional assay for the detection of multidrug-resistant cells using the fluorescent dye rhodamine 123. Ludescher C; Gattringer ; Drach J; Hofmann J; Grunicke H Blood; 1991 Sep; 78(5):1385-7. PubMed ID: 1878599 [No Abstract] [Full Text] [Related]
55. A pH-Dependent rhodamine fluorophore with antiproliferative activity of bladder cancer in Vitro/Vivo and apoptosis mechanism. Lu D; Yang T; Tang N; Li C; Song Y; Wang L; Wong WY; Yin SF; Xing Y; Kambe N; Qiu R Eur J Med Chem; 2022 Jun; 236():114293. PubMed ID: 35385804 [TBL] [Abstract][Full Text] [Related]
56. Charge transfer-oxy radical mechanism for anticancer agents: mAMSA derivatives, rhodamine 123, and nickel salicylaldoximate. Crawford PW; Lumme P; Elo H; Ryan MD; Kovacic P Free Radic Res Commun; 1987; 3(6):347-56. PubMed ID: 3508450 [TBL] [Abstract][Full Text] [Related]
57. Utilizing surface plasmon resonance as a novel method for monitoring Nguyen PH; Cui S; Kozarich AM; Rautio A; Roberts AG; Xiong MP Front Biophys; 2024; 2():. PubMed ID: 38645731 [TBL] [Abstract][Full Text] [Related]
58. JAK2 Inhibitor, Fedratinib, Inhibits P-gp Activity and Co-Treatment Induces Cytotoxicity in Antimitotic Drug-Treated P-gp Overexpressing Resistant KBV20C Cancer Cells. Oh Y; Lee JS; Lee JS; Park JH; Kim HS; Yoon S Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562984 [TBL] [Abstract][Full Text] [Related]
59. Effect of new olivacine derivatives on p53 protein level. Gębarowski T; Wiatrak B; Gębczak K; Tylińska B; Gąsiorowski K Pharmacol Rep; 2020 Feb; 72(1):214-224. PubMed ID: 32016852 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Jouan E; Le Vée M; Mayati A; Denizot C; Parmentier Y; Fardel O Pharmaceutics; 2016 Apr; 8(2):. PubMed ID: 27077878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]