These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11897059)

  • 21. Surrendering to the robot army: why we resist automation in drug discovery and development.
    Cohen LH
    Bioanalysis; 2012 May; 4(9):985-7. PubMed ID: 22612676
    [No Abstract]   [Full Text] [Related]  

  • 22. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.
    Greenspoon SA; Sykes KL; Ban JD; Pollard A; Baisden M; Farr M; Graham N; Collins BL; Green MM; Christenson CC
    Forensic Sci Int; 2006 Dec; 164(2-3):240-8. PubMed ID: 16542806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enabling high-throughput biology with flexible open-source automation.
    Chory EJ; Gretton DW; DeBenedictis EA; Esvelt KM
    Mol Syst Biol; 2021 Mar; 17(3):e9942. PubMed ID: 33764680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modular, low-cost robot for zebrafish handling.
    Pfriem A; Pylatiuk C; Alshut R; Ziegener B; Schulz S; Bretthauer G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():980-3. PubMed ID: 23366058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated production of high density cosmid and YAC colony filters using a robotic workstation.
    Olsen AS; Combs J; Garcia E; Elliott J; Amemiya C; de Jong P; Threadgill G
    Biotechniques; 1993 Jan; 14(1):116-7, 120-3. PubMed ID: 8424867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanobeads as a solid phase in a solute homogeneous assay format.
    Schaertl S; Meyer-Almes FJ
    Expert Rev Mol Diagn; 2001 Nov; 1(4):456-64. PubMed ID: 11901860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automation of protein crystallization trials: use of a robot to deliver reagents to a novel multi-chamber vapor diffusion plate.
    Morris DW; Kim CY; McPherson A
    Biotechniques; 1989 May; 7(5):522-7. PubMed ID: 2633794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels.
    Baxter DF; Kirk M; Garcia AF; Raimondi A; Holmqvist MH; Flint KK; Bojanic D; Distefano PS; Curtis R; Xie Y
    J Biomol Screen; 2002 Feb; 7(1):79-85. PubMed ID: 11897058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogeneous Cell- and Bead-Based Assays for High Throughput Screening Using Fluorometric Microvolume Assay Technology.
    Miraglia S; Swartzman EE; Mellentin-Michelotti J; Evangelista L; Smith C; Gunawan I; Lohman K; Goldberg EM; Manian B; Yuan PM
    J Biomol Screen; 1999; 4(4):193-204. PubMed ID: 10838439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.
    Cherezov V; Peddi A; Muthusubramaniam L; Zheng YF; Caffrey M
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1795-807. PubMed ID: 15388926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the Way to Efficient Analytical Measurements: The Future of Robot-Based Measurements.
    Fleischer H; Thurow K
    SLAS Technol; 2020 Apr; 25(2):208-211. PubMed ID: 31714173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput microsomal stability assay for screening new chemical entities in drug discovery.
    Fonsi M; Orsale MV; Monteagudo E
    J Biomol Screen; 2008 Oct; 13(9):862-9. PubMed ID: 18812573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully automated synthesis of (phospho)peptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization.
    Saxinger C; Conrads TP; Goldstein DJ; Veenstra TD
    BMC Immunol; 2005 Jan; 6():1. PubMed ID: 15647109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.
    Wei R; Oeser T; Billig S; Zimmermann W
    Biotechnol J; 2012 Dec; 7(12):1517-21. PubMed ID: 22623363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cGMP-dependent protein kinase assay for high throughput screening based on time-resolved fluorescence resonance energy transfer.
    Bader B; Butt E; Palmetshofer A; Walter U; Jarchau T; Drueckes P
    J Biomol Screen; 2001 Aug; 6(4):255-64. PubMed ID: 11689125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the economic efficiency of laboratory automation in biotechnology.
    Woo HM; Keasling J
    Trends Biotechnol; 2024 Sep; 42(9):1076-1080. PubMed ID: 38402137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a liquid dispenser for assay development and enzymology in 1536-well format.
    Butendeich H; Pierret NM; Numao S
    J Lab Autom; 2013 Jun; 18(3):245-50. PubMed ID: 23355542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-high-throughput screening for antagonists of a Gi-coupled receptor in a 2.2-microl 3,456-well plate format cyclicAMP assay.
    Weber M; Muthusubramaniam L; Murray J; Hudak E; Kornienko O; Johnson EN; Strulovici B; Kunapuli P
    Assay Drug Dev Technol; 2007 Feb; 5(1):117-25. PubMed ID: 17355204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic algebraic computation of basic kinematic equations of tree structure robot arms: application to human arms.
    Megahed SM
    Proc Inst Mech Eng H; 1991; 205(3):135-43. PubMed ID: 1823787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.