These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11897164)

  • 1. Amphetamine inhibits behavior-related neuronal responses in substantia nigra pars reticulata of rats working for sucrose reinforcement.
    Gulley JM; Kosobud AE; Rebec GV
    Neurosci Lett; 2002 Apr; 322(3):165-8. PubMed ID: 11897164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphetamine-induced behavioral activation is associated with variable changes in basal ganglia output neurons recorded from awake, behaving rats.
    Gulley JM; Reed JL; Kuwajima M; Rebec GV
    Brain Res; 2004 Jun; 1012(1-2):108-18. PubMed ID: 15158167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphetamine-induced release of dendritic dopamine in substantia nigra pars reticulata: D1-mediated behavioral and electrophysiological effects.
    Timmerman W; Abercrombie ED
    Synapse; 1996 Aug; 23(4):280-91. PubMed ID: 8855513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior-related modulation of substantia nigra pars reticulata neurons in rats performing a conditioned reinforcement task.
    Gulley JM; Kosobud AE; Rebec GV
    Neuroscience; 2002; 111(2):337-49. PubMed ID: 11983319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior-related changes in the activity of substantia nigra pars reticulata neurons in freely moving rats.
    Gulley JM; Kuwajima M; Mayhill E; Rebec GV
    Brain Res; 1999 Oct; 845(1):68-76. PubMed ID: 10529445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of crus cerebri lesions and repeated amphetamine treatment on the activity of nigral dopaminergic neurons.
    Heidenreich BA; Rebec GV
    Synapse; 2000 Oct; 38(1):80-6. PubMed ID: 10941143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations in medial prefrontal cortex function associated with amphetamine-induced behavioral sensitization.
    Gulley JM; Stanis JJ
    Neuroscience; 2010 Mar; 166(2):615-24. PubMed ID: 20035836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protein kinase Cβ-selective inhibitor, enzastaurin, attenuates amphetamine-stimulated locomotor activity and self-administration behaviors in rats.
    Altshuler RD; Carpenter CA; Franke TJ; Gnegy ME; Jutkiewicz EM
    Psychopharmacology (Berl); 2019 Nov; 236(11):3231-3242. PubMed ID: 31134292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adolescent amphetamine exposure elicits dose-specific effects on monoaminergic neurotransmission and behaviour in adulthood.
    Labonte B; McLaughlin RJ; Dominguez-Lopez S; Bambico FR; Lucchino I; Ochoa-Sanchez R; Leyton M; Gobbi G
    Int J Neuropsychopharmacol; 2012 Oct; 15(9):1319-30. PubMed ID: 22053980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization to amphetamine on the differential-reinforcement-of-low-rate 72-s schedule.
    Balcells-Olivero M; Richards JB; Seiden LS
    Psychopharmacology (Berl); 1997 Oct; 133(3):207-13. PubMed ID: 9361325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine action in the substantia nigra pars reticulata: iontophoretic studies in awake, unrestrained rats.
    Windels F; Kiyatkin EA
    Eur J Neurosci; 2006 Sep; 24(5):1385-94. PubMed ID: 16987223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological and behavioral output of the rat basal ganglia after intrastriatal infusion of d-amphetamine: lack of support for the basal ganglia model.
    Waszczak BL; Martin L; Boucher N; Zahr N; Sikes RW; Stellar JR
    Brain Res; 2001 Nov; 920(1-2):170-82. PubMed ID: 11716823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptibility to express amphetamine locomotor sensitization correlates with dorsolateral striatum bursting activity and GABAergic synapses in the globus pallidus.
    Gatica RI; Aguilar-Rivera M; Henny P; Fuentealba JA
    Brain Res Bull; 2022 Feb; 179():83-96. PubMed ID: 34920034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats.
    Tan SE
    Brain Res Bull; 2008 Dec; 77(6):412-9. PubMed ID: 18929625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning.
    Ito R; Canseliet M
    Neuropsychopharmacology; 2010 Jun; 35(7):1440-52. PubMed ID: 20200510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentially altered mGluR1 and mGluR5 mRNA expression in rat caudate nucleus and nucleus accumbens in the development and expression of behavioral sensitization to repeated amphetamine administration.
    Mao L; Wang JQ
    Synapse; 2001 Sep; 41(3):230-40. PubMed ID: 11418936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKC inhibition decreases amphetamine-maintained responding under a progressive-ratio schedule of reinforcement.
    Altshuler RD; Mac RC; Gnegy ME; Jutkiewicz EM
    Exp Clin Psychopharmacol; 2021 Dec; 29(6):567-572. PubMed ID: 32940488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral electrophysiology of psychostimulants.
    Rebec GV
    Neuropsychopharmacology; 2006 Nov; 31(11):2341-8. PubMed ID: 16855534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in mRNA levels for heat-shock/stress proteins (Hsp) and a secretory vesicle associated cysteine-string protein (Csp1) after amphetamine (AMPH) exposure.
    Bowyer JF; Davies DL
    Ann N Y Acad Sci; 1999; 890():314-29. PubMed ID: 10668437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age of exposure-dependent effects of amphetamine on behavioral flexibility.
    Hankosky ER; Kofsky NM; Gulley JM
    Behav Brain Res; 2013 Sep; 252():117-25. PubMed ID: 23756139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.