BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11897198)

  • 1. Aerial and aquatic respiration of the Australian desert goby, Chlamydogobius eremius.
    Thompson GG; Withers PC
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Apr; 131(4):871-9. PubMed ID: 11897198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.
    Urbina MA; Forster ME; Glover CN
    Physiol Behav; 2011 May; 103(2):240-7. PubMed ID: 21316378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): progressive responses to prolonged hypoxia.
    Florindo LH; Leite CA; Kalinin AL; Reid SG; Milsom WK; Rantin FT
    J Exp Biol; 2006 May; 209(Pt 9):1709-15. PubMed ID: 16621951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae).
    Gonzales TT; Katoh M; Ishimatsu A
    J Exp Biol; 2006 Mar; 209(Pt 6):1085-92. PubMed ID: 16513935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (
    Mendez-Sanchez JF; Burggren WW
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia.
    Perry SF; Gilmour KM; Vulesevic B; McNeill B; Chew SF; Ip YK
    Physiol Biochem Zool; 2005; 78(3):325-34. PubMed ID: 15887079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure.
    Turko AJ; Robertson CE; Bianchini K; Freeman M; Wright PA
    J Exp Biol; 2014 Nov; 217(Pt 22):3988-95. PubMed ID: 25267849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus.
    Harper SL; Reiber CL
    J Exp Biol; 2006 May; 209(Pt 9):1639-50. PubMed ID: 16621945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri.
    Kind PK; Grigg GC; Booth DT
    Respir Physiol Neurobiol; 2002 Aug; 132(2):179-90. PubMed ID: 12161331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen uptake capacity of the amphibious fish - Amphipnous cuchia (Ham) (Symbranchiformes, Amphipnoidae).
    Singh BR; Thakur RN
    Acta Physiol Acad Sci Hung; 1979; 54(1):13-21. PubMed ID: 546046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of respiration between the gills and air-breathing organ in response to aquatic hypoxia and exercise in the pacific tarpon, Megalops cyprinoides.
    Seymour RS; Christian K; Bennett MB; Baldwin J; Wells RM; Baudinette RV
    Physiol Biochem Zool; 2004; 77(5):760-7. PubMed ID: 15547794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiorespiratory responses of the facultative air-breathing fish jeju, Hoplerythrinus unitaeniatus (Teleostei, Erythrinidae), exposed to graded ambient hypoxia.
    Oliveira RD; Lopes JM; Sanches JR; Kalinin AL; Glass ML; Rantin FT
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Dec; 139(4):479-85. PubMed ID: 15596393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theme and variations: amphibious air-breathing intertidal fishes.
    Martin KL
    J Fish Biol; 2014 Mar; 84(3):577-602. PubMed ID: 24344914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic surface respiration, buoyancy control and the evolution of air-breathing in gobies (Gobiidae: Pisces).
    Gee J; Gee P
    J Exp Biol; 1995; 198(Pt 1):79-89. PubMed ID: 9317375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerial ventilatory responses of the mudskipper, Periophthalmodon schlosseri, to altered aerial and aquatic respiratory gas concentrations.
    Aguilar NM; Ishimatsu A; Ogawa K; Huat KK
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Nov; 127(3):285-92. PubMed ID: 11118938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomics and biogeography of arid-adapted Chlamydogobius goby fishes.
    Mossop KD; Lemmon AR; Moriarty Lemmon E; Eytan R; Adams M; Unmack PJ; Smith Date K; Morales HE; Hammer MP; Wong BBM; Chapple DG
    Mol Phylogenet Evol; 2023 May; 182():107757. PubMed ID: 36925090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise.
    Seymour RS; Farrell AP; Christian K; Clark TD; Bennett MB; Wells RM; Baldwin J
    J Comp Physiol B; 2007 Jul; 177(5):579-87. PubMed ID: 17387483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring oxygen uptake in fishes with bimodal respiration.
    Lefevre S; Bayley M; McKenzie DJ
    J Fish Biol; 2016 Jan; 88(1):206-31. PubMed ID: 26358224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of cutaneous gas exchange during aerial and aquatic respiration in galaxiids.
    Urbina MA; Meredith AS; Glover CN; Forster ME
    J Fish Biol; 2014 Mar; 84(3):759-73. PubMed ID: 24417441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid divergence of animal personality and syndrome structure across an arid-aquatic habitat matrix.
    Moran NP; Mossop KD; Thompson RM; Chapple DG; Wong BBM
    Oecologia; 2017 Sep; 185(1):55-67. PubMed ID: 28779225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.