These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11897843)

  • 21. Endbulbs of held and spherical bushy cells in cats: morphological correlates with physiological properties.
    Sento S; Ryugo DK
    J Comp Neurol; 1989 Feb; 280(4):553-62. PubMed ID: 2708566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice.
    Wang Y; Manis PB
    J Neurophysiol; 2005 Sep; 94(3):1814-24. PubMed ID: 15901757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken.
    Goyer D; Fensky L; Hilverling AM; Kurth S; Kuenzel T
    Eur J Neurosci; 2015 May; 41(11):1416-29. PubMed ID: 25903469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss.
    Xie R; Manis PB
    J Physiol; 2017 Feb; 595(3):919-934. PubMed ID: 27618790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation.
    Englitz B; Tolnai S; Typlt M; Jost J; Rübsamen R
    PLoS One; 2009 Oct; 4(10):e7014. PubMed ID: 19798414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution volumetric imaging constrains compartmental models to explore synaptic integration and temporal processing by cochlear nucleus globular bushy cells.
    Spirou GA; Kersting M; Carr S; Razzaq B; Yamamoto Alves Pinto C; Dawson M; Ellisman MH; Manis PB
    Elife; 2023 Jun; 12():. PubMed ID: 37288824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil.
    Kuenzel T; Nerlich J; Wagner H; Rübsamen R; Milenkovic I
    Front Neural Circuits; 2015; 9():14. PubMed ID: 25873864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Release probability modulates short-term plasticity at a rat giant terminal.
    Oleskevich S; Clements J; Walmsley B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):513-23. PubMed ID: 10766930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits.
    Wang YX; Wenthold RJ; Ottersen OP; Petralia RS
    J Neurosci; 1998 Feb; 18(3):1148-60. PubMed ID: 9437035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival.
    Lu Y; Harris JA; Rubel EW
    J Neurophysiol; 2007 Jan; 97(1):635-46. PubMed ID: 17079338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.
    Clarkson C; Antunes FM; Rubio ME
    J Neurosci; 2016 Sep; 36(39):10214-27. PubMed ID: 27683915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation regulates spontaneous and evoked transmitter release at a giant terminal in the rat auditory brainstem.
    Oleskevich S; Walmsley B
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):349-57. PubMed ID: 10896723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil.
    Dehmel S; Kopp-Scheinpflug C; Weick M; Dörrscheidt GJ; Rübsamen R
    Hear Res; 2010 Sep; 268(1-2):234-49. PubMed ID: 20561574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory nerve terminals in the cochlear nucleus magnocellularis: differences between low and high frequencies.
    Köppl C
    J Comp Neurol; 1994 Jan; 339(3):438-46. PubMed ID: 8132870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulatory influences on time-coding neurons in the ventral cochlear nucleus.
    Kuenzel T
    Hear Res; 2019 Dec; 384():107824. PubMed ID: 31670183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus.
    Campagnola L; Manis PB
    J Neurosci; 2014 Feb; 34(6):2214-30. PubMed ID: 24501361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of congenital deafness on auditory nerve synapses: Type I and Type II multipolar cells in the anteroventral cochlear nucleus of cats.
    Redd EE; Cahill HB; Pongstaporn T; Ryugo DK
    J Assoc Res Otolaryngol; 2002 Dec; 3(4):403-17. PubMed ID: 12486596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats.
    Helfert RH; Krenning J; Wilson TS; Hughes LF
    Hear Res; 2003 Sep; 183(1-2):18-28. PubMed ID: 13679134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus.
    Kuenzel T; Borst JG; van der Heijden M
    J Neurosci; 2011 Mar; 31(11):4260-73. PubMed ID: 21411667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructure and immunocytochemical characteristics of cells in the octopus cell area of the rat cochlear nucleus: comparison with multipolar cells.
    Alibardi L
    Ann Anat; 2003 Jan; 185(1):21-33. PubMed ID: 12597124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.