These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11898419)

  • 1. Mammalian thioredoxin reductases.
    Tamura T; Stadtman TC
    Methods Enzymol; 2002; 347():297-306. PubMed ID: 11898419
    [No Abstract]   [Full Text] [Related]  

  • 2. Redox regulation of cell signaling by thioredoxin reductases.
    Sun QA; Gladyshev VN
    Methods Enzymol; 2002; 347():451-61. PubMed ID: 11898437
    [No Abstract]   [Full Text] [Related]  

  • 3. Mammalian thioredoxin reductases as hydroperoxide reductases.
    Zhong L; Holmgren A
    Methods Enzymol; 2002; 347():236-43. PubMed ID: 11898412
    [No Abstract]   [Full Text] [Related]  

  • 4. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state.
    Brandt W; Wessjohann LA
    Chembiochem; 2005 Feb; 6(2):386-94. PubMed ID: 15651042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenocysteine-containing thioredoxin reductase in C. elegans.
    Gladyshev VN; Krause M; Xu XM; Korotkov KV; Kryukov GV; Sun QA; Lee BJ; Wootton JC; Hatfield DL
    Biochem Biophys Res Commun; 1999 Jun; 259(2):244-9. PubMed ID: 10362494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diterpenoid derivate compound targets selenocysteine of thioredoxin reductases and induces Bax/Bak-independent apoptosis.
    Liu J; Mu C; Yue W; Li J; Ma B; Zhao L; Liu L; Chen Q; Yan C; Liu H; Hao X; Zhu Y
    Free Radic Biol Med; 2013 Oct; 63():485-94. PubMed ID: 23732520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis.
    Nauser T; Steinmann D; Grassi G; Koppenol WH
    Biochemistry; 2014 Aug; 53(30):5017-22. PubMed ID: 24999795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells.
    Liu SY; Stadtman TC
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6138-41. PubMed ID: 9177183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity.
    Tamura T; Stadtman TC
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1006-11. PubMed ID: 8577704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme.
    Tamura T; Gladyshev V; Liu SY; Stadtman TC
    Biofactors; 1995-1996; 5(2):99-102. PubMed ID: 8722124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.
    Lothrop AP; Snider GW; Flemer S; Ruggles EL; Davidson RS; Lamb AL; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):664-74. PubMed ID: 24490974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme.
    Sandalova T; Zhong L; Lindqvist Y; Holmgren A; Schneider G
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9533-8. PubMed ID: 11481439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification, crystallization and preliminary crystallographic data for rat cytosolic selenocysteine 498 to cysteine mutant thioredoxin reductase.
    Zhong L; Persson K; Sandalova T; Schneider G; Holmgren A
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1191-3. PubMed ID: 10957643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions.
    Arnér ES
    Biochim Biophys Acta; 2009 Jun; 1790(6):495-526. PubMed ID: 19364476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The penultimate selenocysteine residue at the C-terminus of mammalian thioredoxin reductase plays an obligatory role in the NADPH-disulfide oxidoreductase catalytic mechanism.
    Gorlatov SN; Stadtman TC
    Biofactors; 2000; 11(1-2):79-81. PubMed ID: 10705968
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of mitochondrial thioredoxin reductase from C. elegans.
    Lacey BM; Hondal RJ
    Biochem Biophys Res Commun; 2006 Aug; 346(3):629-36. PubMed ID: 16780799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human selenium-dependent thioredoxin reductase from HeLa cells: properties of forms with differing heparin affinities.
    Gorlatov SN; Stadtman TC
    Arch Biochem Biophys; 1999 Sep; 369(1):133-42. PubMed ID: 10462449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active sites of thioredoxin reductases: why selenoproteins?
    Gromer S; Johansson L; Bauer H; Arscott LD; Rauch S; Ballou DP; Williams CH; Schirmer RH; Arnér ES
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12618-23. PubMed ID: 14569031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of thioredoxin reductase in HeLa cells stimulated with tumor necrosis factor-alpha.
    Kim JR; Lee SM; Cho SH; Kim JH; Kim BH; Kwon J; Choi CY; Kim YD; Lee SR
    FEBS Lett; 2004 Jun; 567(2-3):189-96. PubMed ID: 15178321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.