BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11898839)

  • 1. Biological instrumentation for the Viking 1975 mission to Mars.
    Klein HP; Vishniac W
    Life Sci Space Res; 1972; 10():201-10. PubMed ID: 11898839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated multi-purpose biology instrument utilizing a single detector, the mass spectrometer.
    Radmer R; Kok B
    Life Sci Space Res; 1972; 10():211-25. PubMed ID: 11898840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.
    Valentin JR
    LC GC; 1989 Mar; 7(3):248-57. PubMed ID: 11539794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of optical asymmetry in amino acids by gas chromatography for extraterrestrial space exploration: results of a new soil processing scheme with breadboard instrumentation.
    Pollock GE; Day R; Kinsey S; Miller SL
    Life Sci Space Res; 1977; 15():27-34. PubMed ID: 11958218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Gulliver", an experiment for extraterrestrial life detection and analysis.
    Levin GV; Heim AH; Thompson MF; Beem DR; Horowitz NH
    Life Sci Space Res; 1964; 2():124-32. PubMed ID: 11881643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Past, present, and future life on Mars.
    McKay CP
    Gravit Space Biol Bull; 1998 May; 11(2):41-50. PubMed ID: 11540637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohazard potential of putative Martian organisms during missions to Mars.
    Warmflash D; Larios-Sanz M; Jones J; Fox GE; McKay DS
    Aviat Space Environ Med; 2007 Apr; 78(4 Suppl):A79-88. PubMed ID: 17511302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the surface chemistry of Mars.
    Grunthaner FJ; Ricco AJ; Butler MA; Lane AL; McKay CP; Zent AP; Quinn RC; Murray B; Klein HP; Levin GV; Terhune RW; Homer ML; Ksendzov A; Niedermann P
    Anal Chem; 1995 Oct; 67(19):605A-610A. PubMed ID: 11536721
    [No Abstract]   [Full Text] [Related]  

  • 9. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments.
    Scher S; Packer E; Sagan C
    Life Sci Space Res; 1964; 2():352-6. PubMed ID: 11883443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mars oxidant experiment (MOx) for Mars '96.
    McKay CP; Grunthaner FJ; Lane AL; Herring M; Bartman RK; Ksendzov A; Manning CM; Lamb JL; Williams RM; Ricco AJ; Butler MA; Murray BC; Quinn RC; Zent AP; Klein HP; Levin GV
    Planet Space Sci; 1998; 46(6-7):769-77. PubMed ID: 11541819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mars/viking 25th Anniversary Tribute. Viking redux: Viking success and lessons for the future.
    Clark BC
    Astrobiology; 2001; 1(4):509-12. PubMed ID: 12448986
    [No Abstract]   [Full Text] [Related]  

  • 12. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organics on Mars?
    ten Kate IL
    Astrobiology; 2010; 10(6):589-603. PubMed ID: 20735250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas exchange ("soil breathing") in the detection of extraterrestrial life.
    Brazhnikov VV; Mukhin LM; Otrostchenko VA; Fedorova RI
    Life Sci Space Res; 1971; 9():179-89. PubMed ID: 12206182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil.
    Oyama VI; Berdahl BJ; Woeller F; Lehwalt M
    Life Sci Space Res; 1978; 16():3-8. PubMed ID: 11965660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions.
    Navarro-González R; Iñiguez E; de la Rosa J; McKay CP
    Astrobiology; 2009 Oct; 9(8):703-15. PubMed ID: 19845443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station.
    Linkin V; Harri AM; Lipatov A; Belostotskaja K; Derbunovich B; Ekonomov A; Khloustova L; Kremnev R; Makarov V; Martinov B; Nenarokov D; Prostov M; Pustovalov A; Shustko G; Jarvinen I; Kivilinna H; Korpela S; Kumpulainen K; Lehto A; Pellinen R; Pirjola R; Riihela P; Salminen A; Schmidt W; McKay CP
    Planet Space Sci; 1998; 46(6-7):717-37. PubMed ID: 11541818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.
    Quinn R; Orenberg J
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4611-8. PubMed ID: 11539578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry on Mars.
    West SJ; Frant MS; Wen X; Geis R; Herdan J; Gillette T; Hecht MH; Schubert W; Grannan S; Kounaves SP
    Am Lab; 1999 Oct; 31(20):48-54. PubMed ID: 11543343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.
    Levin GV; Straat PA
    Astrobiology; 2016 Oct; 16(10):798-810. PubMed ID: 27626510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.