These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11898856)

  • 21. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The search for the mechanism of the reaction catalyzed by farnesyltransferase.
    Sousa SF; Fernandes PA; Ramos MJ
    Chemistry; 2009; 15(17):4243-7. PubMed ID: 19301336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antibody-catalyzed asymmetric intramolecular Michael addition of aldehydes and ketones to yield the disfavored cis-product.
    Weinstain R; Lerner RA; Barbas CF; Shabat D
    J Am Chem Soc; 2005 Sep; 127(38):13104-5. PubMed ID: 16173712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution.
    Heine A; Luz JG; Wong CH; Wilson IA
    J Mol Biol; 2004 Oct; 343(4):1019-34. PubMed ID: 15476818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase.
    Ose T; Watanabe K; Mie T; Honma M; Watanabe H; Yao M; Oikawa H; Tanaka I
    Nature; 2003 Mar; 422(6928):185-9. PubMed ID: 12634789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG; Houk KN; Reymond JL
    J Org Chem; 2004 May; 69(11):3683-92. PubMed ID: 15152997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by copper(I)/TF-BiphamPhos complexes.
    Wang CJ; Liang G; Xue ZY; Gao F
    J Am Chem Soc; 2008 Dec; 130(51):17250-1. PubMed ID: 19035782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2008; 14(2):596-602. PubMed ID: 17960540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of protein, peptide, and small molecule catalysts using catalysis-based selection strategies.
    Tanaka F
    Chem Rec; 2005; 5(5):276-85. PubMed ID: 16211623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway.
    Bains J; Boulanger MJ
    J Mol Biol; 2007 Nov; 373(4):965-77. PubMed ID: 17884091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Germline antibody recognition of distinct carbohydrate epitopes.
    Nguyen HP; Seto NO; MacKenzie CR; Brade L; Kosma P; Brade H; Evans SV
    Nat Struct Biol; 2003 Dec; 10(12):1019-25. PubMed ID: 14625588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the E.coli aspartate transcarbamoylase trapped in the middle of the catalytic cycle.
    Stieglitz KA; Dusinberre KJ; Cardia JP; Tsuruta H; Kantrowitz ER
    J Mol Biol; 2005 Sep; 352(2):478-86. PubMed ID: 16120448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry.
    Copéret C; Chabanas M; Petroff Saint-Arroman R; Basset JM
    Angew Chem Int Ed Engl; 2003 Jan; 42(2):156-81. PubMed ID: 12532344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-function analyses of isochorismate-pyruvate lyase from Pseudomonas aeruginosa suggest differing catalytic mechanisms for the two pericyclic reactions of this bifunctional enzyme.
    Luo Q; Olucha J; Lamb AL
    Biochemistry; 2009 Jun; 48(23):5239-45. PubMed ID: 19432488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting IgG structures reveal extreme asymmetry and flexibility.
    Saphire EO; Stanfield RL; Crispin MD; Parren PW; Rudd PM; Dwek RA; Burton DR; Wilson IA
    J Mol Biol; 2002 May; 319(1):9-18. PubMed ID: 12051932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of protons position in acid-base enzyme catalyzed reactions: the hepatitis C viral NS3 protease.
    Shokhen M; Albeck A
    Proteins; 2004 May; 55(2):245-50. PubMed ID: 15048818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.