These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11898867)

  • 1. Fluorescent pteridine nucleoside analogs: a window on DNA interactions.
    Hawkins ME
    Cell Biochem Biophys; 2001; 34(2):257-81. PubMed ID: 11898867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation.
    Hawkins ME; Pfleiderer W; Jungmann O; Balis FM
    Anal Biochem; 2001 Nov; 298(2):231-40. PubMed ID: 11700977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent pteridine probes for nucleic acid analysis.
    Hawkins ME
    Methods Enzymol; 2008; 450():201-31. PubMed ID: 19152862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into oligonucleotides.
    Hawkins ME; Pfleiderer W; Balis FM; Porter D; Knutson JR
    Anal Biochem; 1997 Jan; 244(1):86-95. PubMed ID: 9025913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, purification and sample experiment for fluorescent pteridine-containing DNA: tools for studying DNA interactive systems.
    Hawkins ME
    Nat Protoc; 2007; 2(4):1013-21. PubMed ID: 17446875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase.
    Yang K; Matsika S; Stanley RJ
    J Phys Chem B; 2007 Sep; 111(35):10615-25. PubMed ID: 17696385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of pteridine nucleoside analogs as hybridization probes.
    Hawkins ME; Balis FM
    Nucleic Acids Res; 2004 Apr; 32(7):e62. PubMed ID: 15090623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.
    Stanley RJ; Hou Z; Yang A; Hawkins ME
    J Phys Chem B; 2005 Mar; 109(8):3690-5. PubMed ID: 16851408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential fluorescence quenching of fluorescent nucleic acid base analogues by native nucleic acid monophosphates.
    Narayanan M; Kodali G; Singh V; Xing Y; Hawkins ME; Stanley RJ
    J Phys Chem B; 2010 May; 114(17):5953-63. PubMed ID: 20387838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence anisotropy and FRET studies of G-quadruplex formation in presence of different cations.
    Juskowiak B; Galezowska E; Zawadzka A; Gluszynska A; Takenaka S
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):835-43. PubMed ID: 16490387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward improved biochips based on rolling circle amplification--influences of the microenvironment on the fluorescence properties of labeled DNA oligonucleotides.
    Mayer-Enthart E; Sialelli J; Rurack K; Resch-Genger U; Köster D; Seitz H
    Ann N Y Acad Sci; 2008; 1130():287-92. PubMed ID: 18596361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2741-50. PubMed ID: 15350908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer.
    Kwok WM; Ma C; Phillips DL
    J Am Chem Soc; 2006 Sep; 128(36):11894-905. PubMed ID: 16953630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of fluorescent cyclic cytosine nucleosides and their fluorescent properties upon incorporation into oligonucleotides.
    Mizuta M; Miyata K; Seio K; Santa T; Sekine M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):19-20. PubMed ID: 17150796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5'-bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA.
    Kostenko E; Dobrikov M; Komarova N; Pyshniy D; Vlassov V; Zenkova M
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(10-11):1859-70. PubMed ID: 11719999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective interactions of a few acridinium derivatives with single strand DNA: study of photophysical and DNA binding interactions.
    Kuruvilla E; Ramaiah D
    J Phys Chem B; 2007 Jun; 111(23):6549-56. PubMed ID: 17516677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching of fluorescent nucleobases by neighboring DNA: the "insulator" concept.
    Wilson JN; Cho Y; Tan S; Cuppoletti A; Kool ET
    Chembiochem; 2008 Jan; 9(2):279-85. PubMed ID: 18072185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of an intramolecular triple-stranded DNA structure monitored by fluorescence of 2-aminopurine or 6-methylisoxanthopterin.
    Shchyolkina AK; Kaluzhny DN; Borisova OF; Hawkins ME; Jernigan RL; Jovin TM; Arndt-Jovin DJ; Zhurkin VB
    Nucleic Acids Res; 2004; 32(2):432-40. PubMed ID: 14739235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes.
    Parkhurst LJ; Parkhurst KM; Powell R; Wu J; Williams S
    Biopolymers; 2001-2002; 61(3):180-200. PubMed ID: 11987180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.