BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11900268)

  • 41. Characterization and molecular cloning of a glutathione S-transferase from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae).
    Rauch N; Nauen R
    Insect Biochem Mol Biol; 2004 Apr; 34(4):321-9. PubMed ID: 15041016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1.
    Santos PM; Sá-Correia I
    J Biotechnol; 2007 Sep; 131(4):371-8. PubMed ID: 17826858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antioxidant enzymes are induced by phenol in the marine microalga Lingulodinium polyedrum.
    Martins PL; Marques LG; Colepicolo P
    Ecotoxicol Environ Saf; 2015 Jun; 116():84-9. PubMed ID: 25770655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conservation of regulatory and structural genes for a multi-component phenol hydroxylase within phenol-catabolizing bacteria that utilize a meta-cleavage pathway.
    Nordlund I; Powlowski J; Hagström A; Shingler V
    J Gen Microbiol; 1993 Nov; 139(11):2695-703. PubMed ID: 8277253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diyne inactivators and activity-based fluorescent labeling of phenol hydroxylase in Pseudomonas sp. CF600.
    Oyarzun Mejia AP; Hyman MR
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36617235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of bacterial glutathione S-transferase on morpholine degradation.
    Emtiazi G; Saleh T; Hassanshahian M
    Biotechnol J; 2009 Feb; 4(2):202-5. PubMed ID: 19194977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and characterization of unique glutathione S-transferases from human muscle.
    Singh SV; Ahmad H; Kurosky A; Awasthi YC
    Arch Biochem Biophys; 1988 Jul; 264(1):13-22. PubMed ID: 3395118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600.
    Shingler V; Franklin FC; Tsuda M; Holroyd D; Bagdasarian M
    J Gen Microbiol; 1989 May; 135(5):1083-92. PubMed ID: 2559941
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutathione transferases from Anguilla anguilla liver: identification, cloning and functional characterization.
    Carletti E; Sulpizio M; Bucciarelli T; Del Boccio P; Federici L; Di Ilio C
    Aquat Toxicol; 2008 Oct; 90(1):48-57. PubMed ID: 18804293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Utilization of phenoxyacetic acid, by strains using either the ortho or meta cleavage of catechol during phenol degradation, after conjugal transfer of tfdA, the gene encoding a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase.
    Radnoti de Lipthay J; Barkay T; Vekova J; Sørensen SJ
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):207-14. PubMed ID: 10091327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mammalian class theta GST and differential susceptibility to carcinogens: a review.
    Landi S
    Mutat Res; 2000 Oct; 463(3):247-83. PubMed ID: 11018744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular identification of glutathione S-transferase gene and cDNAs of two isotypes from northern quahog (Mercenaria mercenaria).
    Feng X; Singh BR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Sep; 154(1):25-36. PubMed ID: 19410653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoaffinity labelling of the active site of the rat glutathione transferases 3-3 and 1-1 and human glutathione transferase A1-1.
    Cooke RJ; Björnestedt R; Douglas KT; McKie JH; King MD; Coles B; Ketterer B; Mannervik B
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):383-90. PubMed ID: 8092989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rat kidney glutathione S-transferase 1 subunits have C-terminal truncations.
    Yeh H; Lee J; Tsai S; Hsieh C; Tam MF
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):1017-25. PubMed ID: 8615753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptation of a phenol-degrading denitrifying bacteria to high concentration of phenol in the medium.
    Son TT; Błaszczyk M; Mycielski R
    Acta Microbiol Pol; 1998; 47(3):297-304. PubMed ID: 9990712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of the mRNA sequences for Pi class glutathione transferases in different hamster species and the corresponding enzyme activities with anti-benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide.
    Swedmark S; Jernström B; Jenssen D
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):533-8. PubMed ID: 8809043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenylacetylene reversibly inhibits the phenol hydroxylase of Pseudomonas sp. CF600 at high concentrations but is oxidized at lower concentrations.
    Kagle J; Hay AG
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):306-15. PubMed ID: 16485115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification and characterization of hepatic glutathione transferases from an insectivorous marsupial, the brown antechinus (Antechinus stuartii).
    Bolton RM; Ahokas JT
    Xenobiotica; 1997 Jun; 27(6):573-86. PubMed ID: 9211657
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida.
    Margesin R; Bergauer P; Gander S
    Extremophiles; 2004 Jun; 8(3):201-7. PubMed ID: 14872323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X.
    Ng LC; Shingler V; Sze CC; Poh CL
    Gene; 1994 Dec; 151(1-2):29-36. PubMed ID: 7828892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.