These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11900268)

  • 81. Solid-state 13C nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soil Pseudomonas sp.
    Heiman AS; Cooper WT
    Appl Environ Microbiol; 1987 Jan; 53(1):156-62. PubMed ID: 3827242
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by
    Nowak A; Mrozik A
    Water Air Soil Pollut; 2016; 227():83. PubMed ID: 26917860
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Models for the kinetics of biodegradation of organic compounds not supporting growth.
    Schmidt SK; Simkins S; Alexander M
    Appl Environ Microbiol; 1985 Aug; 50(2):323-31. PubMed ID: 3901918
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations.
    Schmidt SK; Alexander M
    Appl Environ Microbiol; 1985 Apr; 49(4):822-7. PubMed ID: 3890738
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structural and Thermodynamic Insights into Dimerization Interfaces of Drosophila Glutathione Transferases.
    Schwartz M; Petiot N; Chaloyard J; Senty-Segault V; Lirussi F; Senet P; Nicolai A; Heydel JM; Canon F; Sonkaria S; Khare V; Didierjean C; Neiers F
    Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062472
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Assessing the substrate specificity of a micropollutant degrading strain: generalist or specialist?
    Schittich AR; McKnight US; Stedmon C; Smets BF
    Environ Sci Process Impacts; 2022 Nov; 24(11):2140-2152. PubMed ID: 36222150
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Characterization of a Pseudomonas sp. Capable of Aniline Degradation in the Presence of Secondary Carbon Sources.
    Konopka A; Knight D; Turco RF
    Appl Environ Microbiol; 1989 Feb; 55(2):385-9. PubMed ID: 16347847
    [TBL] [Abstract][Full Text] [Related]  

  • 88. An optimized method for RNA extraction from the polyurethane oligomer degrading strain Pseudomonas capeferrum TDA1 growing on aromatic substrates such as phenol and 2,4-diaminotoluene.
    Cárdenas Espinosa MJ; Schmidgall T; Wagner G; Kappelmeyer U; Schreiber S; Heipieper HJ; Eberlein C
    PLoS One; 2021; 16(11):e0260002. PubMed ID: 34780548
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Some characteristics of a phenol-oxidizing Pseudomonas.
    HAMDY MK; SHERRER EL; RANDLES CI; WEISER HH; SHEETS WD
    Appl Microbiol; 1956 Mar; 4(2):71-5. PubMed ID: 13303136
    [No Abstract]   [Full Text] [Related]  

  • 90. [Degradation of phenol compounds by pseudomonads. I].
    Sunaga T; Arai T
    Nihon Saikingaku Zasshi; 1972 Nov; 27(6):809-15. PubMed ID: 4677317
    [No Abstract]   [Full Text] [Related]  

  • 91. Analysis of Essential Isoprene Metabolic Pathway Proteins in
    Rix GD; Sims LP; Dawson RA; Williamson G; Bryant Y; Crombie AT; Murrell JC
    Appl Environ Microbiol; 2023 Mar; 89(3):e0212222. PubMed ID: 36840579
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Characterization of the Glutathione
    Lienkamp AC; Burnik J; Heine T; Hofmann E; Tischler D
    Microbiol Spectr; 2021 Sep; 9(1):e0047421. PubMed ID: 34319142
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates.
    Viggor S; Jõesaar M; Soares-Castro P; Ilmjärv T; Santos PM; Kapley A; Kivisaar M
    Microorganisms; 2020 Apr; 8(5):. PubMed ID: 32365784
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Deciphering the genome repertoire of Pseudomonas sp. M1 toward β-myrcene biotransformation.
    Soares-Castro P; Santos PM
    Genome Biol Evol; 2014 Dec; 7(1):1-17. PubMed ID: 25503374
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Towards the Description of the Genome Catalogue of Pseudomonas sp. Strain M1.
    Soares-Castro P; Santos PM
    Genome Announc; 2013 Jan; 1(1):. PubMed ID: 23405299
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Occurrence and properties of glutathione S-transferases in phenol-degrading Pseudomonas strains.
    Santos PM; Mignogna G; Heipieper HJ; Zennaro E
    Res Microbiol; 2002 Mar; 153(2):89-98. PubMed ID: 11900268
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600.
    Powlowski J; Shingler V
    Biodegradation; 1994 Dec; 5(3-4):219-36. PubMed ID: 7765834
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Purification and characterization of class mu glutathione S-transferase isozymes from rabbit hepatic tissue.
    Primiano T; Novak RF
    Arch Biochem Biophys; 1993 Mar; 301(2):404-10. PubMed ID: 8460949
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Cloning and sequencing of a phenol hydroxylase gene of Pseudomonas pseudoalcaligenes strain MH1: a bacterium able to mineralize various aromatic compounds.
    Zouari H; Moukha S; Labat M; Sayadi S
    Appl Biochem Biotechnol; 2002; 102-103(1-6):261-76. PubMed ID: 12396129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.