BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11900970)

  • 1. Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements.
    Frazzetto G; Klingbeil P; Bouwmeester T
    Mech Dev; 2002 Apr; 113(1):3-14. PubMed ID: 11900970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis.
    Haremaki T; Weinstein DC
    Dev Dyn; 2009 Sep; 238(9):2382-7. PubMed ID: 19653324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation.
    Hayata T; Tanegashima K; Takahashi S; Sogame A; Asashima M
    Mech Dev; 2002 Mar; 112(1-2):37-51. PubMed ID: 11850177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus.
    Kumano G; Smith WC
    Mech Dev; 2002 Oct; 118(1-2):45-56. PubMed ID: 12351169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANR5, an FGF target gene product, regulates gastrulation in Xenopus.
    Chung HA; Yamamoto TS; Ueno N
    Curr Biol; 2007 Jun; 17(11):932-9. PubMed ID: 17475493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development.
    Steiner AB; Engleka MJ; Lu Q; Piwarzyk EC; Yaklichkin S; Lefebvre JL; Walters JW; Pineda-Salgado L; Labosky PA; Kessler DS
    Development; 2006 Dec; 133(24):4827-38. PubMed ID: 17092955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning.
    Nutt SL; Dingwell KS; Holt CE; Amaya E
    Genes Dev; 2001 May; 15(9):1152-66. PubMed ID: 11331610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF signal regulates gastrulation cell movements and morphology through its target NRH.
    Chung HA; Hyodo-Miura J; Nagamune T; Ueno N
    Dev Biol; 2005 Jun; 282(1):95-110. PubMed ID: 15936332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Xenopus gastrulation by ErbB signaling.
    Nie S; Chang C
    Dev Biol; 2007 Mar; 303(1):93-107. PubMed ID: 17134691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eFGF regulates Xbra expression during Xenopus gastrulation.
    Isaacs HV; Pownall ME; Slack JM
    EMBO J; 1994 Oct; 13(19):4469-81. PubMed ID: 7925289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prickle-related gene in vertebrates is essential for gastrulation cell movements.
    Takeuchi M; Nakabayashi J; Sakaguchi T; Yamamoto TS; Takahashi H; Takeda H; Ueno N
    Curr Biol; 2003 Apr; 13(8):674-9. PubMed ID: 12699625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity.
    Suga A; Hikasa H; Taira M
    Dev Biol; 2006 Jul; 295(1):26-39. PubMed ID: 16690049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning.
    Kumano G; Smith WC
    Dev Dyn; 2002 Dec; 225(4):409-21. PubMed ID: 12454919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm.
    Cooke J; Smith JC
    Dev Biol; 1989 Feb; 131(2):383-400. PubMed ID: 2912801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sebox regulates mesoderm formation in early amphibian embryos.
    Chen G; Tan R; Tao Q
    Dev Dyn; 2015 Nov; 244(11):1415-26. PubMed ID: 26285158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction.
    Beck CW; Sutherland DJ; Woodland HR
    Int J Dev Biol; 1998 Jan; 42(1):67-77. PubMed ID: 9496788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis.
    Kinoshita T; Haruta Y; Sakamoto C; Imaoka S
    Int J Dev Biol; 2011; 55(1):25-31. PubMed ID: 21425079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Akagi K; Kyun Park E; Mood K; Daar IO
    Dev Dyn; 2002 Mar; 223(2):216-28. PubMed ID: 11836786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.