These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11901181)

  • 1. Deficiency of UDP-galactose:N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId.
    Hansske B; Thiel C; Lübke T; Hasilik M; Höning S; Peters V; Heidemann PH; Hoffmann GF; Berger EG; von Figura K; Körner C
    J Clin Invest; 2002 Mar; 109(6):725-33. PubMed ID: 11901181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation.
    Ng BG; Buckingham KJ; Raymond K; Kircher M; Turner EH; He M; Smith JD; Eroshkin A; Szybowska M; Losfeld ME; Chong JX; Kozenko M; Li C; Patterson MC; Gilbert RD; Nickerson DA; Shendure J; Bamshad MJ; ; Freeze HH
    Am J Hum Genet; 2013 Apr; 92(4):632-6. PubMed ID: 23561849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II.
    Foulquier F; Vasile E; Schollen E; Callewaert N; Raemaekers T; Quelhas D; Jaeken J; Mills P; Winchester B; Krieger M; Annaert W; Matthijs G
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3764-9. PubMed ID: 16537452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation.
    Lübbehusen J; Thiel C; Rind N; Ungar D; Prinsen BH; de Koning TJ; van Hasselt PM; Körner C
    Hum Mol Genet; 2010 Sep; 19(18):3623-33. PubMed ID: 20605848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG.
    Radenkovic S; Bird MJ; Emmerzaal TL; Wong SY; Felgueira C; Stiers KM; Sabbagh L; Himmelreich N; Poschet G; Windmolders P; Verheijen J; Witters P; Altassan R; Honzik T; Eminoglu TF; James PM; Edmondson AC; Hertecant J; Kozicz T; Thiel C; Vermeersch P; Cassiman D; Beamer L; Morava E; Ghesquière B
    Am J Hum Genet; 2019 May; 104(5):835-846. PubMed ID: 30982613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum.
    Sprong H; Degroote S; Nilsson T; Kawakita M; Ishida N; van der Sluijs P; van Meer G
    Mol Biol Cell; 2003 Aug; 14(8):3482-93. PubMed ID: 12925779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel potential interaction partners of UDP-galactose (SLC35A2), UDP-N-acetylglucosamine (SLC35A3) and an orphan (SLC35A4) nucleotide sugar transporters.
    Wiktor M; Wiertelak W; Maszczak-Seneczko D; Balwierz PJ; Szulc B; Olczak M
    J Proteomics; 2021 Oct; 249():104321. PubMed ID: 34242836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues.
    Raju TS; Briggs JB; Chamow SM; Winkler ME; Jones AJ
    Biochemistry; 2001 Jul; 40(30):8868-76. PubMed ID: 11467948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of glycosylation in the Golgi apparatus.
    Fleischer B
    J Histochem Cytochem; 1983 Aug; 31(8):1033-40. PubMed ID: 6345657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLC35A2-CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals.
    Ng BG; Sosicka P; Agadi S; Almannai M; Bacino CA; Barone R; Botto LD; Burton JE; Carlston C; Chung BH; Cohen JS; Coman D; Dipple KM; Dorrani N; Dobyns WB; Elias AF; Epstein L; Gahl WA; Garozzo D; Hammer TB; Haven J; Héron D; Herzog M; Hoganson GE; Hunter JM; Jain M; Juusola J; Lakhani S; Lee H; Lee J; Lewis K; Longo N; Lourenço CM; Mak CCY; McKnight D; Mendelsohn BA; Mignot C; Mirzaa G; Mitchell W; Muhle H; Nelson SF; Olczak M; Palmer CGS; Partikian A; Patterson MC; Pierson TM; Quinonez SC; Regan BM; Ross ME; Guillen Sacoto MJ; Scaglia F; Scheffer IE; Segal D; Singhal NS; Striano P; Sturiale L; Symonds JD; Tang S; Vilain E; Willis M; Wolfe LA; Yang H; Yano S; Powis Z; Suchy SF; Rosenfeld JA; Edmondson AC; Grunewald S; Freeze HH
    Hum Mutat; 2019 Jul; 40(7):908-925. PubMed ID: 30817854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Golgi and endoplasmic reticulum functions take place in different subcellular compartments of Entamoeba histolytica.
    Bredeston LM; Caffaro CE; Samuelson J; Hirschberg CB
    J Biol Chem; 2005 Sep; 280(37):32168-76. PubMed ID: 16027148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes.
    Deutscher SL; Hirschberg CB
    J Biol Chem; 1986 Jan; 261(1):96-100. PubMed ID: 3510203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex.
    Brändli AW; Hansson GC; Rodriguez-Boulan E; Simons K
    J Biol Chem; 1988 Nov; 263(31):16283-90. PubMed ID: 3141404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity.
    Sabry S; Vuillaumier-Barrot S; Mintet E; Fasseu M; Valayannopoulos V; Héron D; Dorison N; Mignot C; Seta N; Chantret I; Dupré T; Moore SE
    Orphanet J Rare Dis; 2016 Jun; 11(1):84. PubMed ID: 27343064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease.
    Würde AE; Reunert J; Rust S; Hertzberg C; Haverkämper S; Nürnberg G; Nürnberg P; Lehle L; Rossi R; Marquardt T
    Mol Genet Metab; 2012 Apr; 105(4):634-41. PubMed ID: 22304930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation.
    van Scherpenzeel M; Steenbergen G; Morava E; Wevers RA; Lefeber DJ
    Transl Res; 2015 Dec; 166(6):639-649.e1. PubMed ID: 26307094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder.
    Spaapen LJ; Bakker JA; van der Meer SB; Sijstermans HJ; Steet RA; Wevers RA; Jaeken J
    J Inherit Metab Dis; 2005; 28(5):707-14. PubMed ID: 16151902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie.
    Imbach T; Schenk B; Schollen E; Burda P; Stutz A; Grunewald S; Bailie NM; King MD; Jaeken J; Matthijs G; Berger EG; Aebi M; Hennet T
    J Clin Invest; 2000 Jan; 105(2):233-9. PubMed ID: 10642602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactosyltransferase defects in reeler mouse brains.
    Shur BD
    J Neurochem; 1982 Jul; 39(1):201-9. PubMed ID: 6123550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of terminal N-linked N-acetylglucosamine residues in the Golgi apparatus using galactosyltransferase and endoglucosaminidase F/peptide N-glycosidase F: adaptation of a biochemical approach to electron microscopy.
    Lucocq JM; Berger EG; Roth J
    J Histochem Cytochem; 1987 Jan; 35(1):67-74. PubMed ID: 2432113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.