These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11901999)

  • 61. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat.
    Friebe B; Tuleen NA; Gill BS
    Theor Appl Genet; 1995 Jul; 91(2):248-54. PubMed ID: 24169771
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Manipulation of Homologous and Homoeologous Chromosome Recombination in Wheat.
    Lukaszewski AJ
    Methods Mol Biol; 2016; 1429():77-89. PubMed ID: 27511168
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genetic control of a novel series of trypsin inhibitors in wheat and its relatives.
    Koebner RM
    Biochem Genet; 1987 Aug; 25(7-8):591-602. PubMed ID: 3447592
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Development of Triticum aestivum-Haynaldia villosa 6VS ditelosomic substitution line via phlb mutant].
    Chen JF; Ying J; Wang SL; Liu ZH; Qi LL; Chen PD
    Yi Chuan Xue Bao; 2001; 28(1):52-5. PubMed ID: 11209712
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat.
    Deynze AE; Nelson JC; Sorrells ME; McCouch SR; Dubcovsky J; Dvorák J; Gill KS; Gill BS; Lagudah ES; Appels R
    Genome; 1995 Feb; 38(1):45-59. PubMed ID: 18470151
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chromosome structure of Triticum longissimum relative to wheat.
    Naranjo T
    Theor Appl Genet; 1995 Jul; 91(1):105-9. PubMed ID: 24169674
    [TBL] [Abstract][Full Text] [Related]  

  • 67. C-banding and fluorescence in situ hybridization studies of the wheat-alien hybrid 'Agrotana'.
    Xu J; Conner RL; Laroche A
    Genome; 1994 Jun; 37(3):477-81. PubMed ID: 18470093
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chromosomal localization of intergenomic RFLP loci in hexaploid wheat.
    Devey ME; Hart GE
    Genome; 1993 Oct; 36(5):913-8. PubMed ID: 18470038
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural organization of the group-1 chromosomes of two bread wheat sister lines.
    Boeuf C; Prodanovic S; Gay G; Bernard M
    Theor Appl Genet; 2003 Mar; 106(5):938-46. PubMed ID: 12647070
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Control of Endosperm Proteins in TRITICUM AESTIVUM (Var. Chinese Spring) and AEGILOPS UMBELLULATA by Homoeologous Group 1 Chromosomes.
    Brown JW; Kemble RJ; Law CN; Flavell RB
    Genetics; 1979 Sep; 93(1):189-200. PubMed ID: 17248961
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Chromosomal location of the genes conferring the tolerance to phosphorus deficiency stress in Lophopyrum elongatum genome] [In Process Citation].
    Li YJ; Liu JZ; Li B; Li JY; Yao SJ; Li ZS
    Yi Chuan Xue Bao; 1999; 26(6):703-10. PubMed ID: 10876673
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Basis of Tolerance Mechanism to Metsulfuron-Methyl in
    Tang W; Liu S; Yu X; Yang Y; Zhou X; Lu Y
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579356
    [No Abstract]   [Full Text] [Related]  

  • 73. A guide to the homoeology of chromosomes within the Triticeae.
    Miller TE; Reader SM
    Theor Appl Genet; 1987 Jun; 74(2):214-7. PubMed ID: 24241567
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L. genomes.
    Zhong GY; Dvorak J
    Theor Appl Genet; 1995 Feb; 90(2):229-36. PubMed ID: 24173895
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes.
    Mickelson-Young L; Endo TR; Gill BS
    Theor Appl Genet; 1995 Jun; 90(7-8):1007-11. PubMed ID: 24173055
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species.
    Ogihara Y; Shimizu H; Hasegawa K; Tsujimoto H; Sasakuma T
    Theor Appl Genet; 1994 Jun; 88(3-4):383-94. PubMed ID: 24186023
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.
    Francki MG; Hayton S; Gummer JP; Rawlinson C; Trengove RD
    Plant Biotechnol J; 2016 Feb; 14(2):649-60. PubMed ID: 26032167
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inheritance and chromosomal locations of male fertility restoring gene transferred from Aegilops umbellulata Zhuk. to Triticum aestivum L.
    Ma ZQ; Zhao YH; Sorrells ME
    Mol Gen Genet; 1995 May; 247(3):351-7. PubMed ID: 7770040
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley.
    Devos KM; Millan T; Gale MD
    Theor Appl Genet; 1993 Feb; 85(6-7):784-92. PubMed ID: 24196051
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gene mapping of Microcebus murinus (Lemuridae): a comparison with man and Cebus capucinus (Cebidae).
    Cochet C; Créau-Goldberg N; Turleau C; De Grouchy J
    Cytogenet Cell Genet; 1982; 33(3):213-21. PubMed ID: 6957281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.