These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11902791)

  • 21. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis.
    Schäfer AI; Nghiem LD; Waite TD
    Environ Sci Technol; 2003 Jan; 37(1):182-8. PubMed ID: 12542309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes.
    Boschetti-de-Fierro A; Voigt M; Storr M; Krause B
    Int J Artif Organs; 2013 Jul; 36(7):455-63. PubMed ID: 23661558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of NF membrane to improve quality of chemically treated surface water.
    Liikanen R; Miettinen I; Laukkanen R
    Water Res; 2003 Feb; 37(4):864-72. PubMed ID: 12531268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling nanofiltration of electrolyte solutions.
    Yaroshchuk A; Bruening ML; Zholkovskiy E
    Adv Colloid Interface Sci; 2019 Jun; 268():39-63. PubMed ID: 30951927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter.
    Schäfer AI; Fane AG; Waite TD
    Water Res; 2001 Apr; 35(6):1509-17. PubMed ID: 11317898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of solution physico-chemistry on the charge property of nanofiltration membranes.
    Tay JH; Liu J; Sun DD
    Water Res; 2002 Feb; 36(3):585-98. PubMed ID: 11827320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fouling of nanofiltration membrane by effluent organic matter: characterization using different organic fractions in wastewater.
    Zhang L; Wang L; Zhang G; Wang X
    J Environ Sci (China); 2009; 21(1):49-53. PubMed ID: 19402399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Researches on factors affecting the removal of carbamazepine by nanofiltration membranes].
    Huang Y; Zhang H; Dong BZ
    Huan Jing Ke Xue; 2011 Mar; 32(3):705-10. PubMed ID: 21634167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM).
    Lee N; Amy G; Croué JP; Buisson H
    Water Res; 2004 Dec; 38(20):4511-23. PubMed ID: 15556226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of Spiegler⁻Kedem and Steric Hindrance Pore Models for Analyzing Nanofiltration Membrane Performance for Smart Water Production.
    Nair RR; Protasova E; Strand S; Bilstad T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30200672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics and application of ceramic nanofiltration membranes.
    Weber R; Chmiel H; Mavrov V
    Ann N Y Acad Sci; 2003 Mar; 984():178-93. PubMed ID: 12783817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of transmembrane pressure and feed concentration on the retention of arsenic, chromium and cadmium from water by nanofiltration.
    Babaee Y; Mousavi SM; Danesh S; Baratian A
    J Environ Sci Eng; 2010 Jan; 52(1):1-6. PubMed ID: 21114097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in solvent-resistant nanofiltration membranes: experimental observations and applications.
    Bhanushali D; Bhattacharyya D
    Ann N Y Acad Sci; 2003 Mar; 984():159-77. PubMed ID: 12783816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.
    Yu W; Liu T; Crawshaw J; Liu T; Graham N
    Water Res; 2018 Aug; 139():353-362. PubMed ID: 29665507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration.
    Xie M; Liu Z; Xu Y
    J Hazard Mater; 2010 Sep; 181(1-3):975-80. PubMed ID: 20554387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater.
    Tang CY; Fu QS; Criddle CS; Leckie JO
    Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.