BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11902834)

  • 21. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.
    Gu YJ; Xia ZX
    Proteins; 2000 Apr; 39(1):37-46. PubMed ID: 10737925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide.
    Jaiswal M; LaRusso NF; Nishioka N; Nakabeppu Y; Gores GJ
    Cancer Res; 2001 Sep; 61(17):6388-93. PubMed ID: 11522631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution.
    Nash HM; Lu R; Lane WS; Verdine GL
    Chem Biol; 1997 Sep; 4(9):693-702. PubMed ID: 9331411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase.
    Kuznetsov NA; Zharkov DO; Koval VV; Buckle M; Fedorova OS
    Biochemistry; 2009 Dec; 48(48):11335-43. PubMed ID: 19835417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaving group activation by aromatic stacking: an alternative to general acid catalysis.
    Versées W; Loverix S; Vandemeulebroucke A; Geerlings P; Steyaert J
    J Mol Biol; 2004 Apr; 338(1):1-6. PubMed ID: 15050818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular biology: ensuring error-free DNA repair.
    Lindahl T
    Nature; 2004 Feb; 427(6975):598. PubMed ID: 14961108
    [No Abstract]   [Full Text] [Related]  

  • 27. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 8-Oxoguanine enhances bending of DNA that favors binding to glycosylases.
    Miller JH; Fan-Chiang CC; Straatsma TP; Kennedy MA
    J Am Chem Soc; 2003 May; 125(20):6331-6. PubMed ID: 12785867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Product-assisted catalysis in base-excision DNA repair.
    Fromme JC; Bruner SD; Yang W; Karplus M; Verdine GL
    Nat Struct Biol; 2003 Mar; 10(3):204-11. PubMed ID: 12592398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Interaction of Escherichia coli 8-oxoguanine DNA glycosylase with single-stranded oligodeoxyribonucleotides and their complexes].
    Ishchenko AA; Bulychev NV; Maksakova GA; Johnson F; Nevinskiĭ GA
    Mol Biol (Mosk); 1998; 32(3):549-58. PubMed ID: 9720079
    [No Abstract]   [Full Text] [Related]  

  • 32. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface.
    Buchko GW; McAteer K; Wallace SS; Kennedy MA
    DNA Repair (Amst); 2005 Mar; 4(3):327-39. PubMed ID: 15661656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase.
    Schmaltz LF; Ceniceros JE; Lee S
    Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase.
    Sowlati-Hashjin S; Wetmore SD
    Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates.
    Fedorova OS; Nevinsky GA; Koval VV; Ishchenko AA; Vasilenko NL; Douglas KT
    Biochemistry; 2002 Feb; 41(5):1520-8. PubMed ID: 11814345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment of mitochondrial DNA repair enzymes against accumulation of 8-oxo-guanine in the spinal motor neurons of amyotrophic lateral sclerosis.
    Kikuchi H; Furuta A; Nishioka K; Suzuki SO; Nakabeppu Y; Iwaki T
    Acta Neuropathol; 2002 Apr; 103(4):408-14. PubMed ID: 11904761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.
    Biswas T; Clos LJ; SantaLucia J; Mitra S; Roy R
    J Mol Biol; 2002 Jul; 320(3):503-13. PubMed ID: 12096906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase.
    Dalhus B; Forsbring M; Helle IH; Vik ES; Forstrøm RJ; Backe PH; Alseth I; Bjørås M
    Structure; 2011 Jan; 19(1):117-27. PubMed ID: 21220122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pre-steady-state kinetic study of substrate specificity of Escherichia coli formamidopyrimidine--DNA glycosylase.
    Kuznetsov NA; Koval VV; Zharkov DO; Vorobjev YN; Nevinsky GA; Douglas KT; Fedorova OS
    Biochemistry; 2007 Jan; 46(2):424-35. PubMed ID: 17209553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of T4 pyrimidine dimer glycosylase in a reduced imine covalent complex with abasic site-containing DNA.
    Golan G; Zharkov DO; Grollman AP; Dodson ML; McCullough AK; Lloyd RS; Shoham G
    J Mol Biol; 2006 Sep; 362(2):241-58. PubMed ID: 16916523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.