BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11902842)

  • 1. Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
    Dayie KT; Brodsky AS; Williamson JR
    J Mol Biol; 2002 Mar; 317(2):263-78. PubMed ID: 11902842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the HIV-2 TAR-argininamide complex.
    Brodsky AS; Williamson JR
    J Mol Biol; 1997 Apr; 267(3):624-39. PubMed ID: 9126842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA.
    Long KS; Crothers DM
    Biochemistry; 1999 Aug; 38(31):10059-69. PubMed ID: 10433713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization.
    Pitt SW; Majumdar A; Serganov A; Patel DJ; Al-Hashimi HM
    J Mol Biol; 2004 Apr; 338(1):7-16. PubMed ID: 15050819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of the TAR RNA and its complex with arginine.
    Sugimoto N; Ohmichi T; Tanaka A; Matsumura A; Sasaki M
    Nucleic Acids Symp Ser; 1993; (29):167-8. PubMed ID: 8247753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule study of the inhibition of HIV-1 transactivation response region DNA/DNA annealing by argininamide.
    Landes CF; Zeng Y; Liu HW; Musier-Forsyth K; Barbara PF
    J Am Chem Soc; 2007 Aug; 129(33):10181-8. PubMed ID: 17658799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR evidence for a base triple in the HIV-2 TAR C-G.C+ mutant-argininamide complex.
    Brodsky AS; Erlacher HA; Williamson JR
    Nucleic Acids Res; 1998 Apr; 26(8):1991-5. PubMed ID: 9518494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of a dinuclear ruthenium(ii) complex to the TAR region of the HIV-AIDS viral RNA.
    Buck DP; Spillane CB; Collins JG; Keene FR
    Mol Biosyst; 2008 Aug; 4(8):851-4. PubMed ID: 18633486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy at single molecule level on the Tat-TAR complex and its inhibitors.
    Nandi CK; Parui PP; Brutschy B; Scheffer U; Göbel M
    Biopolymers; 2008 Jan; 89(1):17-25. PubMed ID: 17764074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings.
    Al-Hashimi HM; Gosser Y; Gorin A; Hu W; Majumdar A; Patel DJ
    J Mol Biol; 2002 Jan; 315(2):95-102. PubMed ID: 11779230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries.
    Ferner J; Suhartono M; Breitung S; Jonker HR; Hennig M; Wöhnert J; Göbel M; Schwalbe H
    Chembiochem; 2009 Jun; 10(9):1490-4. PubMed ID: 19444830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics studies of the HIV-1 TAR and its complex with argininamide.
    Nifosì R; Reyes CM; Kollman PA
    Nucleic Acids Res; 2000 Dec; 28(24):4944-55. PubMed ID: 11121486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine-binding RNAs resembling TAR identified by in vitro selection.
    Tao J; Frankel AD
    Biochemistry; 1996 Feb; 35(7):2229-38. PubMed ID: 8652564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAR-RNA recognition by a novel cyclic aminoglycoside analogue.
    Raghunathan D; Sánchez-Pedregal VM; Junker J; Schwiegk C; Kalesse M; Kirschning A; Carlomagno T
    Nucleic Acids Res; 2006; 34(12):3599-608. PubMed ID: 16855296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized influence of 2'-hydroxyl groups and helix geometry on protein recognition in the RNA major groove.
    Landt SG; Tipton AR; Frankel AD
    Biochemistry; 2005 May; 44(17):6547-58. PubMed ID: 15850388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation and affinity of HIV-1 Tat fragments in Tat-TAR complex determined by fluorescence resonance energy transfer.
    Cao H; Tamilarasu N; Rana TM
    Bioconjug Chem; 2006; 17(2):352-8. PubMed ID: 16536465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1.
    Watrin M; Von Pelchrzim F; Dausse E; Schroeder R; Toulmé JJ
    Biochemistry; 2009 Jul; 48(26):6278-84. PubMed ID: 19496624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic "hot spots".
    Davis B; Afshar M; Varani G; Murchie AI; Karn J; Lentzen G; Drysdale M; Bower J; Potter AJ; Starkey ID; Swarbrick T; Aboul-ela F
    J Mol Biol; 2004 Feb; 336(2):343-56. PubMed ID: 14757049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape.
    Bardaro MF; Shajani Z; Patora-Komisarska K; Robinson JA; Varani G
    Nucleic Acids Res; 2009 Apr; 37(5):1529-40. PubMed ID: 19139066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.