These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 11902900)
1. Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: effect of geometry and tunneling on proton-transfer rate constants. Cui Q; Karplus M J Am Chem Soc; 2002 Mar; 124(12):3093-124. PubMed ID: 11902900 [TBL] [Abstract][Full Text] [Related]
2. Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: proton transfer in triosephosphate isomerase. Wang M; Lu Z; Yang W J Chem Phys; 2006 Mar; 124(12):124516. PubMed ID: 16599706 [TBL] [Abstract][Full Text] [Related]
3. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method. Wang M; Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer in the mechanism of triosephosphate isomerase. Harris TK; Cole RN; Comer FI; Mildvan AS Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453 [TBL] [Abstract][Full Text] [Related]
5. Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction. Alston WC; Kanska M; Murray CJ Biochemistry; 1996 Oct; 35(39):12873-81. PubMed ID: 8841131 [TBL] [Abstract][Full Text] [Related]
6. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping. Xiang Y; Warshel A J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038 [TBL] [Abstract][Full Text] [Related]
7. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe. Richard JP; Cristobal JR; Amyes TL Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414 [TBL] [Abstract][Full Text] [Related]
8. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003 [TBL] [Abstract][Full Text] [Related]
9. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527 [TBL] [Abstract][Full Text] [Related]
10. The Perfect Enzyme : Revisiting the Modelling of Initial Proton Transfer in Triosephosphate Isomerase. Aschi M; Amadei A Theor Biol Forum; 2016 Jan; 109(1-2):13-36. PubMed ID: 29513350 [TBL] [Abstract][Full Text] [Related]
11. The importance of ensemble averaging in enzyme kinetics. Masgrau L; Truhlar DG Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028 [TBL] [Abstract][Full Text] [Related]
12. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Richard JP Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228 [TBL] [Abstract][Full Text] [Related]
13. Tunneling and classical paths for proton transfer in an enzyme reaction dominated by tunneling: oxidation of tryptamine by aromatic amine dehydrogenase. Masgrau L; Ranaghan KE; Scrutton NS; Mulholland AJ; Sutcliffe MJ J Phys Chem B; 2007 Mar; 111(11):3032-47. PubMed ID: 17388439 [TBL] [Abstract][Full Text] [Related]
14. Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling. Kohen A; Jensen JH J Am Chem Soc; 2002 Apr; 124(15):3858-64. PubMed ID: 11942822 [TBL] [Abstract][Full Text] [Related]
15. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase. Peräkylä M; Pakkanen TA Proteins; 1996 Jun; 25(2):225-36. PubMed ID: 8811738 [TBL] [Abstract][Full Text] [Related]
16. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Harris TK; Abeygunawardana C; Mildvan AS Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185 [TBL] [Abstract][Full Text] [Related]
17. Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction. Major DT; Heroux A; Orville AM; Valley MP; Fitzpatrick PF; Gao J Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20734-9. PubMed ID: 19926855 [TBL] [Abstract][Full Text] [Related]
18. The intramolecular mechanism for the second proton transfer in triosephosphate isomerase (TIM): a QM/FE approach. Alagona G; Ghio C; Kollman PA J Comput Chem; 2003 Jan; 24(1):46-56. PubMed ID: 12483674 [TBL] [Abstract][Full Text] [Related]
19. Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway. Davenport RC; Bash PA; Seaton BA; Karplus M; Petsko GA; Ringe D Biochemistry; 1991 Jun; 30(24):5821-6. PubMed ID: 2043623 [TBL] [Abstract][Full Text] [Related]
20. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O. O'Donoghue AC; Amyes TL; Richard JP Biochemistry; 2005 Feb; 44(7):2610-21. PubMed ID: 15709774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]