These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11902933)

  • 1. FTIR study of glyphosate-copper complexes.
    Undabeytia T; Morillo E; Maqueda C
    J Agric Food Chem; 2002 Mar; 50(7):1918-21. PubMed ID: 11902933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of dissolved glyphosate upon the sorption of copper by three selected soils.
    Morillo E; Undabeytia T; Maqueda C; Ramos A
    Chemosphere; 2002 May; 47(7):747-52. PubMed ID: 12079070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coadsorption of Cu(II) and glyphosate at the water-goethite (alpha-FeOOH) interface: molecular structures from FTIR and EXAFS measurements.
    Sheals J; Granström M; Sjöberg S; Persson P
    J Colloid Interface Sci; 2003 Jun; 262(1):38-47. PubMed ID: 16256578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of glyphosate on goethite: molecular characterization of surface complexes.
    Sheals J; Sjöberg S; Persson P
    Environ Sci Technol; 2002 Jul; 36(14):3090-5. PubMed ID: 12141488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyphosate adsorption on soils of different characteristics. Influence of copper addition.
    Morillo E; Undabeytia T; Maqueda C; Ramos A
    Chemosphere; 2000 Jan; 40(1):103-7. PubMed ID: 10665451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc adsorption on goethite as affected by glyphosate.
    Wang YJ; Zhou DM; Sun RJ; Jia DA; Zhu HW; Wang SQ
    J Hazard Mater; 2008 Feb; 151(1):179-84. PubMed ID: 17604908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation.
    Danial R; Sobri S; Abdullah LC; Mobarekeh MN
    Chemosphere; 2019 Oct; 233():559-569. PubMed ID: 31195261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-biosorption of copper and glyphosate by Ulva lactuca.
    Trinelli MA; Areco MM; Afonso Mdos S
    Colloids Surf B Biointerfaces; 2013 May; 105():251-8. PubMed ID: 23376752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes.
    Hansen LR; Roslev P
    Aquat Toxicol; 2016 Oct; 179():36-43. PubMed ID: 27564378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.
    Liu B; Dong L; Yu Q; Li X; Wu F; Tan Z; Luo S
    J Phys Chem B; 2016 Mar; 120(9):2132-7. PubMed ID: 26862689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium adsorption in montmorillonite as affected by glyphosate.
    Wang YJ; Zhou DM; Luo XS; Sun RJ; Chen HM
    J Environ Sci (China); 2004; 16(6):881-4. PubMed ID: 15900712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular orbital theory study on surface complex structures of glyphosate on goethite: calculation of vibrational frequencies.
    Tribe L; Kwon KD; Trout CC; Kubicki JD
    Environ Sci Technol; 2006 Jun; 40(12):3836-41. PubMed ID: 16830550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitated transport of diuron and glyphosate in high copper vineyard soils.
    Dousset S; Jacobson AR; Dessogne JB; Guichard N; Baveye PC; Andreux F
    Environ Sci Technol; 2007 Dec; 41(23):8056-61. PubMed ID: 18186337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals.
    Ascolani Yael J; Fuhr JD; Bocan GA; Daza Millone A; Tognalli N; Dos Santos Afonso M; Martiarena ML
    J Agric Food Chem; 2014 Oct; 62(40):9651-6. PubMed ID: 25226508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly selective and sensitive nanosensor for the detection of glyphosate.
    Chang YC; Lin YS; Xiao GT; Chiu TC; Hu CC
    Talanta; 2016 Dec; 161():94-98. PubMed ID: 27769503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops.
    Mamy L; Barriuso E
    Chemosphere; 2005 Nov; 61(6):844-55. PubMed ID: 15951002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.
    Li W; Wang YJ; Zhu M; Fan TT; Zhou DM; Phillips BL; Sparks DL
    Environ Sci Technol; 2013 May; 47(9):4211-9. PubMed ID: 23550510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics.
    Zhou DM; Wang YJ; Cang L; Hao XZ; Luo XS
    Chemosphere; 2004 Dec; 57(10):1237-44. PubMed ID: 15519368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst.
    Chen S; Liu Y
    Chemosphere; 2007 Mar; 67(5):1010-7. PubMed ID: 17156814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal complexes of taurine. The first reported solution equilibrium studies for complex formation by taurine at physiological pH; the copper(II)-glycylglycinate-taurine and the copper(II)-glycylaspartate-taurine systems.
    O'Brien EC; Farkas E; Rockenbauer A; Nolan KB
    J Inorg Biochem; 1999; 77(3-4):135-9. PubMed ID: 10702036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.