These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 11902935)
1. Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse. Garau VL; Angioni A; Del Real AA; Russo M; Cabras P J Agric Food Chem; 2002 Mar; 50(7):1929-32. PubMed ID: 11902935 [TBL] [Abstract][Full Text] [Related]
2. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Jankowska M; Kaczynski P; Hrynko I; Lozowicka B Environ Sci Pollut Res Int; 2016 Jun; 23(12):11885-900. PubMed ID: 26957431 [TBL] [Abstract][Full Text] [Related]
3. Gas chromatographic determination of cyprodinil, fludioxonil, pyrimethanil, and tebuconazole in grapes, must, and wine. Cabras P; Angioni A; Garau VL; Minelli EV J AOAC Int; 1997; 80(4):867-70. PubMed ID: 9241848 [TBL] [Abstract][Full Text] [Related]
4. Determination and analysis of the dissipation and residue of cyprodinil and fludioxonil in grape and soil using a modified QuEChERS method. Zhang W; Chen H; Han X; Yang Z; Tang M; Zhang J; Zeng S; Hu D; Zhang K Environ Monit Assess; 2015 Jul; 187(7):414. PubMed ID: 26050067 [TBL] [Abstract][Full Text] [Related]
5. Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing. Angioni A; Schirra M; Garau VL; Melis M; Tuberoso CI; Cabras P Food Addit Contam; 2004 Nov; 21(11):1065-70. PubMed ID: 15764335 [TBL] [Abstract][Full Text] [Related]
6. Dissipation rates of cyprodinil and fludioxonil in lettuce and table grape in the field and under cold storage conditions. Marín A; Oliva J; Garcia C; Navarro S; Barba A J Agric Food Chem; 2003 Jul; 51(16):4708-11. PubMed ID: 14705900 [TBL] [Abstract][Full Text] [Related]
7. Method development and validation for cyprodinil and fludioxonil in blueberries by solid-phase microextraction gas chromatography, and their degradation kinetics. Munitz MS; Resnik SL; Montti MI Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(7):1299-307. PubMed ID: 23799251 [TBL] [Abstract][Full Text] [Related]
8. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia. Cesnik HB; Gregorcic A; Cus F Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Apr; 25(4):438-43. PubMed ID: 18348043 [TBL] [Abstract][Full Text] [Related]
9. Residues behavior of some fungicides applied on two greenhouse tomato varieties different in shape and weight. Cabizza M; Dedola F; Satta M J Environ Sci Health B; 2012; 47(5):379-84. PubMed ID: 22424061 [TBL] [Abstract][Full Text] [Related]
10. Degradation of cyprodinil, fludioxonil, cyfluthrin and pymetrozine on lettuce after different application methods. Cabizza M; Satta M; Falconi S; Onano M; Uccheddu G J Environ Sci Health B; 2007; 42(7):761-6. PubMed ID: 17763031 [TBL] [Abstract][Full Text] [Related]
12. Solarization and biosolarization enhance fungicide dissipation in the soil. Fenoll J; Ruiz E; Hellín P; Navarro S; Flores P Chemosphere; 2010 Mar; 79(2):216-20. PubMed ID: 20149407 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Self-Propelled High-Energy Ultrasonic Atomizer on Azoxystrobin and Tebuconazole Application in Sunlit Greenhouse Tomatoes. Li YJ; Li YF; Chen RH; Li XS; Pan CP; Song JL Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29843392 [TBL] [Abstract][Full Text] [Related]
14. Persistence of azoxystrobin in/on grapes and soil in different grapes growing areas of India. Gajbhiye VT; Gupta S; Mukherjee I; Singh SB; Singh N; Dureja P; Kumar Y Bull Environ Contam Toxicol; 2011 Jan; 86(1):90-4. PubMed ID: 21153804 [TBL] [Abstract][Full Text] [Related]
15. Solid-phase microextraction-gas chromatographic-mass spectrometric method for the determination of the fungicides cyprodinil and fludioxonil in white wines. Rial OR; Yagüe RC; Cancho GB; Simal GJ J Chromatogr A; 2002 Jan; 942(1-2):41-52. PubMed ID: 11822396 [TBL] [Abstract][Full Text] [Related]
16. Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. Kanetis L; Förster H; Adaskaveg JE Phytopathology; 2010 Aug; 100(8):738-46. PubMed ID: 20626277 [TBL] [Abstract][Full Text] [Related]
17. Dissipation and residue of azoxystrobin in banana under field condition. Wang S; Sun H; Liu Y Environ Monit Assess; 2013 Sep; 185(9):7757-61. PubMed ID: 23443637 [TBL] [Abstract][Full Text] [Related]
18. Determination of famoxadone, fenamidone, fenhexamid and iprodione residues in greenhouse tomatoes. Angioni A; Porcu L; Dedola F Pest Manag Sci; 2012 Apr; 68(4):543-7. PubMed ID: 22102420 [TBL] [Abstract][Full Text] [Related]
19. In vitro assessment of pesticide residues bioaccessibility in conventionally grown blueberries as affected by complex food matrix. Milinčić DD; Vojinović UD; Kostić AŽ; Pešić MB; Špirović Trifunović BD; Brkić DV; Stević MŽ; Kojić MO; Stanisavljević NS Chemosphere; 2020 Aug; 252():126568. PubMed ID: 32220723 [TBL] [Abstract][Full Text] [Related]
20. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber. Li Y; Li Y; Pan X; Li QX; Chen R; Li X; Pan C; Song J Pest Manag Sci; 2018 Feb; 74(2):448-455. PubMed ID: 28898566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]