These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11902944)

  • 1. Modeling the partition of volatile aroma compounds from a cloud emulsion.
    Carey ME; Asquith T; Linforth RS; Taylor AJ
    J Agric Food Chem; 2002 Mar; 50(7):1985-90. PubMed ID: 11902944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of lipid fraction, emulsifier fraction, and mean particle diameter of oil-in-water emulsions on the release of 20 aroma compounds.
    van Ruth SM; King C; Giannouli P
    J Agric Food Chem; 2002 Apr; 50(8):2365-71. PubMed ID: 11929298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High correlation between octanol-air partition coefficient and aroma release rate from O/W emulsions under non-equilibrium.
    Tamaru S; Ono A; Igura N; Shimoda M
    Food Res Int; 2019 Feb; 116():883-887. PubMed ID: 30717019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model studies on the release of aroma compounds from structured and nonstructured oil systems using proton-transfer reaction mass spectrometry.
    Landy P; Pollien P; Rytz A; Leser ME; Sagalowicz L; Blank I; Spadone JC
    J Agric Food Chem; 2007 Mar; 55(5):1915-22. PubMed ID: 17263546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed volatile compound release properties of self-assembly structures in emulsions.
    Phan VA; Liao YC; Antille N; Sagalowicz L; Robert F; Godinot N
    J Agric Food Chem; 2008 Feb; 56(3):1072-7. PubMed ID: 18197619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of droplet crystallization and melting on the aroma release properties of a model oil-in-water emulsion.
    Ghosh S; Peterson DG; Coupland JN
    J Agric Food Chem; 2006 Mar; 54(5):1829-37. PubMed ID: 16506840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.
    Tamaru S; Igura N; Shimoda M
    Food Chem; 2018 Jan; 239():712-717. PubMed ID: 28873626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different methods: static and dynamic headspace and solid-phase microextraction for the measurement of interactions between milk proteins and flavor compounds with an application to emulsions.
    Fabre M; Aubry V; Guichard E
    J Agric Food Chem; 2002 Mar; 50(6):1497-501. PubMed ID: 11879027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and modeling studies showing the effect of lipid type and level on flavor release from milk-based liquid emulsions.
    Roberts DD; Pollien P; Watzke B
    J Agric Food Chem; 2003 Jan; 51(1):189-95. PubMed ID: 12502406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of emulsion properties on release of esters under static headspace, in vivo, and artificial throat conditions in relation to sensory intensity.
    Weel KG; Boelrijk AE; Burger JJ; Jacobs MA; Gruppen H; Voragen AG; Smit G
    J Agric Food Chem; 2004 Oct; 52(21):6572-7. PubMed ID: 15479025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.
    Reiner SJ; Reineccius GA; Peppard TL
    J Food Sci; 2010 Jun; 75(5):E236-46. PubMed ID: 20629869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethyl hexanoate transfer modeling in carrageenan matrices for determination of diffusion and partition properties.
    Juteau-Vigier A; Atlan S; Deleris I; Guichard E; Souchon I; Trelea IC
    J Agric Food Chem; 2007 May; 55(9):3577-84. PubMed ID: 17419636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.
    Hou JJ; Guo J; Wang JM; Yang XQ
    J Sci Food Agric; 2016 Oct; 96(13):4449-56. PubMed ID: 26841309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of aroma compounds in starch matrices: competitions between aroma compounds toward amylose and amylopectin.
    Arvisenet G; Voilley A; Cayot N
    J Agric Food Chem; 2002 Dec; 50(25):7345-9. PubMed ID: 12452656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of flavor compounds in model food systems: a thermodynamic study.
    Philippe E; Seuvre AM; Colas B; Langendorff V; Schippa C; Voilley A
    J Agric Food Chem; 2003 Feb; 51(5):1393-8. PubMed ID: 12590487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fat nature and aroma compound hydrophobicity on flavor release from complex food emulsions.
    Relkin P; Fabre M; Guichard E
    J Agric Food Chem; 2004 Oct; 52(20):6257-63. PubMed ID: 15453696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gelatinization and starch-emulsifier interactions on aroma release from starch-rich model systems.
    Lopes Da Silva JA; Castro SM; Delgadillo I
    J Agric Food Chem; 2002 Mar; 50(7):1976-84. PubMed ID: 11902943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Headspace solid-phase microextraction method for the study of the volatility of selected flavor compounds.
    Jung DM; Ebeler SE
    J Agric Food Chem; 2003 Jan; 51(1):200-5. PubMed ID: 12502408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of emulsion characteristics on the release of aroma as detected by sensory evaluation, static headspace gas chromatography, and electronic nose.
    Miettinen SM; Tuorila H; Piironen V; Vehkalahti K; Hyvönen L
    J Agric Food Chem; 2002 Jul; 50(15):4232-9. PubMed ID: 12105951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aroma compounds-proteins interaction using headspace techniques.
    Jouenne E; Crouzet J
    Adv Exp Med Biol; 2001; 488():33-41. PubMed ID: 11548158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.