These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11903146)
1. Mechanical behavior and stability of the internal membrane of the InCor ventricular assist device. da Costa Teixeira PB; Gonçalves PB; Cestari IA; Leirner AA; Pamplona D Artif Organs; 2001 Nov; 25(11):912-21. PubMed ID: 11903146 [TBL] [Abstract][Full Text] [Related]
2. Design, manufacturing, and testing of a paracorporeal pulsatile ventricular assist device: São Paulo Heart Institute VAD. Oshiro MS; Hayashida SA; Maizato MJ; Marques EF; Stolf NA; Jatene AD; Leirner AA Artif Organs; 1995 Mar; 19(3):274-9. PubMed ID: 7779018 [TBL] [Abstract][Full Text] [Related]
3. Magnetic suspension of the rotor of a ventricular assist device of mixed flow type. Horikawa O; de Andrade AJ; da Silva I; Bock EG Artif Organs; 2008 Apr; 32(4):334-41. PubMed ID: 18370950 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of ventricular assist devices (POLVAD and POLVAD_EXT) based on multiscale FEM model. Milenin A; Kopernik M Acta Bioeng Biomech; 2011; 13(2):13-23. PubMed ID: 21761807 [TBL] [Abstract][Full Text] [Related]
5. Hemodynamic performance and inflammatory response during the use of VAD-InCor as a bridge to transplant. Galantier J; Moreira LF; Benício A; Leirner AA; Cestari I; Bocchi EA; Bacal F; Stolf NA Arq Bras Cardiol; 2008 Nov; 91(5):327-34. PubMed ID: 19142378 [TBL] [Abstract][Full Text] [Related]
6. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device. Choi H; Lee HM; Nam KW; Choi J; Lee JJ; Kim HC; Song SJ; Ahn CB; Son HS; Lim CH; Son KH; Park YD; Jeong GS; Sun K Artif Organs; 2011 Jun; 35(6):614-24. PubMed ID: 21535444 [TBL] [Abstract][Full Text] [Related]
8. Design improvements of the HIA-VAD based on animal experiments. Eilers R; Harbott P; Reul H; Rakhorst G; Rau G Artif Organs; 1994 Jul; 18(7):473-8. PubMed ID: 7980088 [TBL] [Abstract][Full Text] [Related]
9. Structure design and mechanical performance test of a direct ventricular assist device pneumatic flexible actuator. Yun Z; Xu K; Yang F; Tang X Int J Artif Organs; 2022 Jan; 45(1):35-43. PubMed ID: 33626952 [TBL] [Abstract][Full Text] [Related]
10. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver. Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587 [TBL] [Abstract][Full Text] [Related]
11. Long-term durability test of axial-flow ventricular assist device under pulsatile flow. Nishida M; Kosaka R; Maruyama O; Yamane T; Shirasu A; Tatsumi E; Taenaka Y J Artif Organs; 2017 Mar; 20(1):26-33. PubMed ID: 27815718 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD). Jin W; Clark C J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814 [TBL] [Abstract][Full Text] [Related]
13. Digital image correlation of coated and uncoated Religa Heart_Ext ventricular assist device. Kopernik M; Gawlikowski M; Milenin A; Altyntsev I; Kustosz R; Kąc S Acta Bioeng Biomech; 2015; 17(4):49-58. PubMed ID: 26899910 [TBL] [Abstract][Full Text] [Related]
14. Estimation of mechanical heart valve cavitation in a pneumatic ventricular assist device. Lee H; Akagawa E; Homma A; Tsukiya T; Tatsumi E; Taenaka Y J Artif Organs; 2007; 10(3):181-5. PubMed ID: 17846718 [TBL] [Abstract][Full Text] [Related]
15. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve. Lee H; Tatsumi E; Taenaka Y ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312 [TBL] [Abstract][Full Text] [Related]
16. Finite element analysis of stresses developed in the blood sac of a left ventricular assist device. Haut Donahue TL; Dehlin W; Gillespie J; Weiss WJ; Rosenberg G Med Eng Phys; 2009 May; 31(4):454-60. PubMed ID: 19131267 [TBL] [Abstract][Full Text] [Related]
18. Numerical modelling and verification of Polish ventricular assist device. Milenin A; Kopernik M; Jurkojć D; Gawlikowski M; Rusin T; Darłak M; Kustosz R Acta Bioeng Biomech; 2012; 14(3):49-57. PubMed ID: 23140381 [TBL] [Abstract][Full Text] [Related]
19. Design method of a foldable ventricular assist device for minimally invasive implantation. Hsu PL; Wang Y; Amaral F; Parker J; Schmitz-Rode T; Autschbach R; Steinseifer U Artif Organs; 2014 Apr; 38(4):298-308. PubMed ID: 24033499 [TBL] [Abstract][Full Text] [Related]
20. Toward the Virtual Benchmarking of Pneumatic Ventricular Assist Devices: Application of a Novel Fluid-Structure Interaction-Based Strategy to the Penn State 12 cc Device. Caimi A; Sturla F; Good B; Vidotto M; De Ponti R; Piatti F; Manning KB; Redaelli A J Biomech Eng; 2017 Aug; 139(8):0810081-08100810. PubMed ID: 28586917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]