BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11903977)

  • 1. Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems.
    Lin J; He X; Hu Y; Kuang T; Ceulemans R
    Physiol Plant; 2002 Feb; 114(2):296-302. PubMed ID: 11903977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Distribution on Cell Wall Micro-Morphological Regions of Fibre in Developmental
    Liu B; Tang L; Chen Q; Zhu L; Zou X; Li B; Zhou Q; Fu Y; Lu Y
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of lignin distribution during ageing of bamboo culms (Phyllostachys pubescens) with visible-light spectrophotometry].
    Yang SM; Jiang ZH; Ren HQ; Fei BH; Liu XE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Dec; 30(12):3399-404. PubMed ID: 21322248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra.
    Lybeer B; Koch G; VAN Acker J; Goetghebeur P
    Ann Bot; 2006 Apr; 97(4):529-39. PubMed ID: 16464876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward understanding the different function of two types of parenchyma cells in bamboo culms.
    He XQ; Suzuki K; Kitamura S; Lin JX; Cui KM; Itoh T
    Plant Cell Physiol; 2002 Feb; 43(2):186-95. PubMed ID: 11867698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignification in relation to the biennial growth habit in brassicas.
    Evans BW; Snape CE; Jarvis MC
    Phytochemistry; 2003 Aug; 63(7):765-9. PubMed ID: 12877916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Immature Bamboo (
    Qu C; Ogita S; Kishimoto T
    J Agric Food Chem; 2020 Sep; 68(37):9896-9905. PubMed ID: 32809820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling lignin structures and lignin-carbohydrate complex (LCC) linkages of bamboo (Phyllostachys pubescens) fibers and parenchyma cells.
    Lv Z; Bai Z; Su L; Rao J; Hu Y; Tian R; Jia S; Guan Y; Lü B; Peng F
    Int J Biol Macromol; 2023 Jun; 241():124461. PubMed ID: 37086759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Auxin and Gibberellin in Controlling Lignin Formation in Primary Phloem Fibers and in Xylem of Coleus blumei Stems.
    Aloni R; Tollier MT; Monties B
    Plant Physiol; 1990 Dec; 94(4):1743-7. PubMed ID: 16667911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation from guaiacyl to syringyl lignin in the differentiating xylem of Robinia pseudoacacia.
    Yamauchi K; Fukushima K
    C R Biol; 2004; 327(9-10):791-7. PubMed ID: 15587070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper.
    Gritsch CS; Kleist G; Murphy RJ
    Ann Bot; 2004 Oct; 94(4):497-505. PubMed ID: 15319227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides.
    Siqueira G; Milagres AM; Carvalho W; Koch G; Ferraz A
    Biotechnol Biofuels; 2011 Mar; 4():7. PubMed ID: 21410971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells.
    Ryser U; Keller B
    Plant Cell; 1992 Jul; 4(7):773-783. PubMed ID: 12297662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein.
    Ryser U; Schorderet M; Zhao GF; Studer D; Ruel K; Hauf G; Keller B
    Plant J; 1997 Jul; 12(1):97-111. PubMed ID: 9263454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
    Smith RA; Schuetz M; Karlen SD; Bird D; Tokunaga N; Sato Y; Mansfield SD; Ralph J; Samuels AL
    Plant Physiol; 2017 Jun; 174(2):1028-1036. PubMed ID: 28416705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems.
    Pandey JL; Kiemle SN; Richard TL; Zhu Y; Cosgrove DJ; Anderson CT
    Front Plant Sci; 2016; 7():1309. PubMed ID: 27630649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Thermal Characterization of Milled Wood Lignin from Bamboo (
    Mun JS; Mun SP
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance.
    Wang X; Ren H; Zhang B; Fei B; Burgert I
    J R Soc Interface; 2012 May; 9(70):988-96. PubMed ID: 21920959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.
    Reyes-Rivera J; Canché-Escamilla G; Soto-Hernández M; Terrazas T
    PLoS One; 2015; 10(4):e0123919. PubMed ID: 25880223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.