BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11904144)

  • 1. Chickens' Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors.
    Bailey MJ; Chong NW; Xiong J; Cassone VM
    FEBS Lett; 2002 Feb; 513(2-3):169-74. PubMed ID: 11904144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily rhythm and regulation of clock gene expression in the rat pineal gland.
    Simonneaux V; Poirel VJ; Garidou ML; Nguyen D; Diaz-Rodriguez E; Pévet P
    Brain Res Mol Brain Res; 2004 Jan; 120(2):164-72. PubMed ID: 14741406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian and photic regulation of cryptochrome mRNAs in the rat pineal gland.
    Nakamura TJ; Shinohara K; Funabashi T; Mitsushima D; Kimura F
    Neurosci Res; 2001 Sep; 41(1):25-32. PubMed ID: 11535290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and circadian regulation of cryptochrome genes in Japanese quail (Coturnix coturnix japonica).
    Fu Z; Inaba M; Noguchi T; Kato H
    J Biol Rhythms; 2002 Feb; 17(1):14-27. PubMed ID: 11837944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators.
    Haque R; Chaurasia SS; Wessel JH; Iuvone PM
    Neuroreport; 2002 Dec; 13(17):2247-51. PubMed ID: 12488805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the blue-light receptor cryptochrome in the human retina.
    Thompson CL; Bowes Rickman C; Shaw SJ; Ebright JN; Kelly U; Sancar A; Rickman DW
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4515-21. PubMed ID: 14507900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of PACAP in the control of circadian expression of clock genes in the chicken pineal gland.
    Nagy AD; Csernus VJ
    Peptides; 2007 Sep; 28(9):1767-74. PubMed ID: 17716782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts.
    Yamamoto K; Okano T; Fukada Y
    Neurosci Lett; 2001 Nov; 313(1-2):13-6. PubMed ID: 11684328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N-acetyltransferase, inducible cyclic amp early repressor, period1 or cryptochrome1 mRNA in the sheep pineal.
    Johnston JD; Bashforth R; Diack A; Andersson H; Lincoln GA; Hazlerigg DG
    Neuroscience; 2004; 124(4):789-95. PubMed ID: 15026119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception.
    Sancar A
    Annu Rev Biochem; 2000; 69():31-67. PubMed ID: 10966452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
    Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR
    J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats.
    Asai M; Yoshinobu Y; Kaneko S; Mori A; Nikaido T; Moriya T; Akiyama M; Shibata S
    J Neurosci Res; 2001 Dec; 66(6):1133-9. PubMed ID: 11746446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation.
    Bailey MJ; Cassone VM
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):769-75. PubMed ID: 14985289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interacting molecular loops in the mammalian circadian clock.
    Shearman LP; Sriram S; Weaver DR; Maywood ES; Chaves I; Zheng B; Kume K; Lee CC; van der Horst GT; Hastings MH; Reppert SM
    Science; 2000 May; 288(5468):1013-9. PubMed ID: 10807566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock.
    Griffin EA; Staknis D; Weitz CJ
    Science; 1999 Oct; 286(5440):768-71. PubMed ID: 10531061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules.
    Yasuo S; Watanabe M; Okabayashi N; Ebihara S; Yoshimura T
    Endocrinology; 2003 Sep; 144(9):3742-8. PubMed ID: 12933643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors.
    Lucas RJ; Freedman MS; Muñoz M; Garcia-Fernández JM; Foster RG
    Science; 1999 Apr; 284(5413):505-7. PubMed ID: 10205062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms. Two feedback loops run mammalian clock.
    Barinaga M
    Science; 2000 May; 288(5468):943-4. PubMed ID: 10841707
    [No Abstract]   [Full Text] [Related]  

  • 20. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.