These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11904144)

  • 41. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types.
    Chaurasia SS; Rollag MD; Jiang G; Hayes WP; Haque R; Natesan A; Zatz M; Tosini G; Liu C; Korf HW; Iuvone PM; Provencio I
    J Neurochem; 2005 Jan; 92(1):158-70. PubMed ID: 15606905
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction.
    Thompson CL; Selby CP; Partch CL; Plante DT; Thresher RJ; Araujo F; Sancar A
    Brain Res Mol Brain Res; 2004 Mar; 122(2):158-66. PubMed ID: 15010208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryptochromes and inner retinal non-visual irradiance detection.
    Van Gelder RN; Sancar A
    Novartis Found Symp; 2003; 253():31-42; discussion 42-55, 102-9, 281-4. PubMed ID: 14712913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
    Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM
    PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Seeing the world in red and blue: insight into plant vision and photoreceptors.
    Ahmad M
    Curr Opin Plant Biol; 1999 Jun; 2(3):230-5. PubMed ID: 10375562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.
    Ahmad M; Grancher N; Heil M; Black RC; Giovani B; Galland P; Lardemer D
    Plant Physiol; 2002 Jun; 129(2):774-85. PubMed ID: 12068118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and properties of human blue-light photoreceptor cryptochrome 2.
    Ozgur S; Sancar A
    Biochemistry; 2003 Mar; 42(10):2926-32. PubMed ID: 12627958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
    Etchegaray JP; Lee C; Wade PA; Reppert SM
    Nature; 2003 Jan; 421(6919):177-82. PubMed ID: 12483227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2.
    Yu W; Nomura M; Ikeda M
    Biochem Biophys Res Commun; 2002 Jan; 290(3):933-41. PubMed ID: 11798163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock.
    Thompson CL; Sancar A
    Oncogene; 2002 Dec; 21(58):9043-56. PubMed ID: 12483519
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cryptochromes: blue light receptors for plants and animals.
    Cashmore AR; Jarillo JA; Wu YJ; Liu D
    Science; 1999 Apr; 284(5415):760-5. PubMed ID: 10221900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tales from the crypt(ochromes).
    Van Gelder RN
    J Biol Rhythms; 2002 Apr; 17(2):110-20. PubMed ID: 12002158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circadian expression of clock genes clock and Cry1 in the embryonic chicken pineal gland.
    Nagy AD; Kommedal S; Seomangal K; Csernus VJ
    Ann N Y Acad Sci; 2009 Apr; 1163():484-7. PubMed ID: 19456394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seeing blue: the discovery of cryptochrome.
    Ahmad M; Cashmore AR
    Plant Mol Biol; 1996 Mar; 30(5):851-61. PubMed ID: 8639745
    [No Abstract]   [Full Text] [Related]  

  • 55. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.
    Facella P; Lopez L; Carbone F; Galbraith DW; Giuliano G; Perrotta G
    PLoS One; 2008 Jul; 3(7):e2798. PubMed ID: 18665253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant photomorphogenesis: a green light for cryptochrome research.
    Whitelam G
    Curr Biol; 1995 Dec; 5(12):1351-3. PubMed ID: 8749382
    [No Abstract]   [Full Text] [Related]  

  • 57. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice.
    Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14697-702. PubMed ID: 11114194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Somers DE; Devlin PF; Kay SA
    Science; 1998 Nov; 282(5393):1488-90. PubMed ID: 9822379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Circadian rhythms. CRY's clock role differs in mice, flies.
    Barinaga M
    Science; 1999 Jul; 285(5427):506-7. PubMed ID: 10447476
    [No Abstract]   [Full Text] [Related]  

  • 60. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis.
    Yanovsky MJ; Mazzella MA; Whitelam GC; Casal JJ
    J Biol Rhythms; 2001 Dec; 16(6):523-30. PubMed ID: 11760010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.