These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11905556)

  • 1. The vibration of an artery-like tube conveying pulsatile fluid flow.
    Zhang YL; Reese JM; Gorman DG; Madhok R
    Proc Inst Mech Eng H; 2002; 216(1):1-11. PubMed ID: 11905556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Finite element analysis of pulsatile flow in aortic arch].
    Qiao A; Wu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):583-8. PubMed ID: 11791314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves.
    Pahlevan NM; Gharib M
    J Biomech; 2011 Jul; 44(11):2083-9. PubMed ID: 21679951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave motions in a collapsible tube conveying fluid.
    Matsuzaki Y; Matsumoto T
    Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Dynamics of Dacron Aortic Prostheses Conveying Pulsatile Flow.
    Tubaldi E; Païdoussis MP; Amabili M
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29423504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery.
    Theodorakakos A; Gavaises M; Andriotis A; Zifan A; Liatsis P; Pantos I; Efstathopoulos EP; Katritsis D
    Phys Med Biol; 2008 Sep; 53(18):4875-92. PubMed ID: 18711245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.
    Karmonik C; Partovi S; Schmack B; Weymann A; Loebe M; Noon GP; Piontek P; Karck M; Lumsden AB; Ruhparwar A
    Artif Organs; 2014 Feb; 38(2):142-8. PubMed ID: 23889366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis in three-dimensional flow through a lateral saccular aneurysm.
    Matsuzawa T
    Front Med Biol Eng; 1993; 5(2):89-94. PubMed ID: 8241034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction.
    Yazicioglu Y; Royston TJ; Spohnholtz T; Martin B; Loth F; Bassiouny HS
    J Acoust Soc Am; 2005 Aug; 118(2):1193-209. PubMed ID: 16158674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.
    Axner L; Hoekstra AG; Jeays A; Lawford P; Hose R; Sloot PM
    Biomed Eng Online; 2009 Oct; 8():23. PubMed ID: 19799782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of intra-aortic flow disturbance by the fluid momentum index: Effect of the left ventricular systolic function on the hemodynamics in the aorta.
    Nakamura M; Wada S; Yamaguchi T
    Technol Health Care; 2007; 15(2):111-20. PubMed ID: 17361055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions.
    Amabili M; Karazis K; Mongrain R; Païdoussis MP; Cartier R
    Int J Numer Method Biomed Eng; 2012 May; 28(5):495-512. PubMed ID: 25099454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.