These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11905562)

  • 41. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter?
    Wang L; Yang W; Peng X; Li D; Dong S; Zhang S; Zhu J; Jin Z
    J Biomech; 2015 Apr; 48(6):1112-8. PubMed ID: 25680298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs.
    Nečas D; Vrbka M; Galandáková A; Křupka I; Hartl M
    J Mech Behav Biomed Mater; 2019 Jan; 89():237-248. PubMed ID: 30297220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synovial fluid lubrication of artificial joints: protein film formation and composition.
    Fan J; Myant C; Underwood R; Cann P
    Faraday Discuss; 2012; 156():69-85; discussion 87-103. PubMed ID: 23285623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing.
    Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P
    Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wear of 36-mm BIOLOX(R) delta ceramic-on-ceramic bearing in total hip replacements under edge loading conditions.
    Al-Hajjar M; Fisher J; Tipper JL; Williams S; Jennings LM
    Proc Inst Mech Eng H; 2013 May; 227(5):535-42. PubMed ID: 23637263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hip joint simulator study of the performance of metal-on-metal joints: Part II: design.
    Dowson D; Hardaker C; Flett M; Isaac GH
    J Arthroplasty; 2004 Dec; 19(8 Suppl 3):124-30. PubMed ID: 15578566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-on-metal hip simulator study of increased wear particle surface area due to 'severe' patient activity.
    Bowsher JG; Hussain A; Williams PA; Shelton JC
    Proc Inst Mech Eng H; 2006 Feb; 220(2):279-87. PubMed ID: 16669394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of lubrication on the friction and wear of Biolox®delta.
    Ma L; Rainforth WM
    Acta Biomater; 2012 Jul; 8(6):2348-59. PubMed ID: 22342830
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A meta-analysis of design- and manufacturing-related parameters influencing the wear behavior of metal-on-metal hip joint replacements.
    Kretzer JP; Kleinhans JA; Jakubowitz E; Thomsen M; Heisel C
    J Orthop Res; 2009 Nov; 27(11):1473-80. PubMed ID: 19472378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The tribology of metal-on-metal total hip replacements.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2006 Feb; 220(2):183-94. PubMed ID: 16669386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-on-metal bearings surfaces: materials, manufacture, design, optimization, and alternatives.
    Isaac GH; Thompson J; Williams S; Fisher J
    Proc Inst Mech Eng H; 2006 Feb; 220(2):119-33. PubMed ID: 16669381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.
    Hu XQ; Wood RJ; Taylor A; Tuke MA
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1061-9. PubMed ID: 22292204
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A three-axis hip joint simulator for wear and friction studies on total hip prostheses.
    Saikko VO
    Proc Inst Mech Eng H; 1996; 210(3):175-85. PubMed ID: 8885654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of proteins on the friction and lubrication of artificial joints.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2006 Aug; 220(6):687-93. PubMed ID: 16961188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Does surface wettability influence the friction and wear of large-diameter CoCrMo alloy hip resurfacings?
    Curran S; Hoskin T; Williams S; Scholes SC; Kinbrum A; Unsworth A
    Proc Inst Mech Eng H; 2013 Aug; 227(8):847-58. PubMed ID: 23852389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.
    Goldsmith AA; Dowson D; Isaac GH; Lancaster JG
    Proc Inst Mech Eng H; 2000; 214(1):39-47. PubMed ID: 10718049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein-mediated boundary lubrication in arthroplasty.
    Heuberger MP; Widmer MR; Zobeley E; Glockshuber R; Spencer ND
    Biomaterials; 2005 Apr; 26(10):1165-73. PubMed ID: 15451636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of wear paths produced by hip replacement patients during normal walking on wear rates.
    Bennett D; Humphreys L; O'Brien S; Kelly C; Orr J; Beverland DE
    J Orthop Res; 2008 Sep; 26(9):1210-7. PubMed ID: 18404653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Friction and lubrication in cushion form bearings for artificial hip joints.
    Auger DD; Dowson D; Fisher J; Jin ZM
    Proc Inst Mech Eng H; 1993; 207(1):25-33. PubMed ID: 8363695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.