These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 11906152)
21. Quantum chemical modelling of the rate determining step for oxygen reduction on quinones. Wass JR; Ahlberg E; Panas I; Schiffrin DJ Phys Chem Chem Phys; 2006 Sep; 8(36):4189-99. PubMed ID: 16971987 [TBL] [Abstract][Full Text] [Related]
22. Effect of the leaving group on the electrodic reduction mechanism of anti-Helicobacter pylori metronidazole derivatives, in aprotic and protic media. Cavalcanti JC; de Abreu FC; Oliveira NV; de Moura MA; Chaves JG; Alves RJ; Bertinaria M; Fruttero R; Goulart MO Bioelectrochemistry; 2004 Jun; 63(1-2):353-7. PubMed ID: 15110302 [TBL] [Abstract][Full Text] [Related]
23. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH. de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802 [TBL] [Abstract][Full Text] [Related]
24. The influence of cetyltrimethyl ammonium bromide on electrochemical properties of thyroxine reduction at carbon nanotubes modified electrode. Wang F; Fei J; Hu S Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):95-101. PubMed ID: 15542346 [TBL] [Abstract][Full Text] [Related]
25. Direct electrochemistry of horseradish peroxidase immobilized in a chitosan-[C4mim][BF4] film: determination of electrode kinetic parameters. Long JS; Silvester DS; Wildgoose GG; Surkus AE; Flechsig GU; Compton RG Bioelectrochemistry; 2008 Nov; 74(1):183-7. PubMed ID: 18786868 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Ren W; Luo HQ; Li NB Biosens Bioelectron; 2006 Jan; 21(7):1086-92. PubMed ID: 15871920 [TBL] [Abstract][Full Text] [Related]
27. Reduction of Cr(VI) by caffeic acid. Deiana S; Premoli A; Senette C Chemosphere; 2007 May; 67(10):1919-26. PubMed ID: 17240421 [TBL] [Abstract][Full Text] [Related]
28. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide. Makhotkina O; Kilmartin PA J Agric Food Chem; 2013 Jun; 61(23):5573-81. PubMed ID: 23692398 [TBL] [Abstract][Full Text] [Related]
29. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Li J; Yu J; Zhao F; Zeng B Anal Chim Acta; 2007 Mar; 587(1):33-40. PubMed ID: 17386750 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
31. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant. Anusevicius Z; Miseviciene L; Medina M; Martinez-Julvez M; Gomez-Moreno C; Cenas N Arch Biochem Biophys; 2005 May; 437(2):144-50. PubMed ID: 15850554 [TBL] [Abstract][Full Text] [Related]
32. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding. Yuasa J; Yamada S; Fukuzumi S J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924 [TBL] [Abstract][Full Text] [Related]
33. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes. Hegde RN; Hosamani RR; Nandibewoor ST Colloids Surf B Biointerfaces; 2009 Sep; 72(2):259-65. PubMed ID: 19446444 [TBL] [Abstract][Full Text] [Related]
34. Determination of rate and equilibrium constants for the reactions between electron transfer mediators and proteins by linear sweep voltammetry. Parker VD; Roddick A; Seefeldt LC; Wang H; Zheng G Anal Biochem; 1997 Jul; 249(2):212-8. PubMed ID: 9212873 [TBL] [Abstract][Full Text] [Related]
35. Oxyhalogen-sulfur chemistry: kinetics and mechanism of oxidation of N-acetylthiourea by chlorite and chlorine dioxide. Olagunju O; Siegel PD; Olojo R; Simoyi RH J Phys Chem A; 2006 Feb; 110(7):2396-410. PubMed ID: 16480299 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical oxidation of 2-thiouracil at pyrolytic graphite electrode. Goyal RN; Singh UP; Abdullah AA Bioelectrochemistry; 2005 Sep; 67(1):7-13. PubMed ID: 15967396 [TBL] [Abstract][Full Text] [Related]
37. Electrochemical oxidation of ochratoxin A at a glassy carbon electrode and in situ evaluation of the interaction with deoxyribonucleic acid using an electrochemical deoxyribonucleic acid-biosensor. Oliveira SC; Diculescu VC; Palleschi G; Compagnone D; Oliveira-Brett AM Anal Chim Acta; 2007 Apr; 588(2):283-91. PubMed ID: 17386822 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Salimi A; Hallaj R; Soltanian S Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977 [TBL] [Abstract][Full Text] [Related]
39. Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination. Sun W; Duan Y; Li Y; Gao H; Jiao K Talanta; 2009 May; 78(3):695-9. PubMed ID: 19269414 [TBL] [Abstract][Full Text] [Related]
40. The oxidation of caffeic acid derivatives as model reaction for the formation of potent gonadotropin inhibitors in plant extracts. John M; Gumbinger HG; Winterhoff H Planta Med; 1993 Jun; 59(3):195-9. PubMed ID: 8316585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]