These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11906160)

  • 1. The involvement of molybdenum in life.
    Williams RJ; Fraústo da Silva JJ
    Biochem Biophys Res Commun; 2002 Mar; 292(2):293-9. PubMed ID: 11906160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.
    Pushie MJ; Cotelesage JJ; George GN
    Metallomics; 2014 Jan; 6(1):15-24. PubMed ID: 24068390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism.
    Boll M; Schink B; Messerschmidt A; Kroneck PM
    Biol Chem; 2005 Oct; 386(10):999-1006. PubMed ID: 16218872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why vanadium complexes perform poorly in comparison to related molybdenum complexes in the catalytic reduction of dinitrogen to ammonia (Schrock cycle): a theoretical study.
    Guha AK; Phukan AK
    Inorg Chem; 2011 Sep; 50(18):8826-33. PubMed ID: 21838226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten.
    Wang JJ; Kryatova OP; Rybak-Akimova EV; Holm RH
    Inorg Chem; 2004 Dec; 43(25):8092-101. PubMed ID: 15578849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated?
    Rehder D
    Org Biomol Chem; 2008 Mar; 6(6):957-64. PubMed ID: 18327316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases.
    Enemark JH; Cooney JJ; Wang JJ; Holm RH
    Chem Rev; 2004 Feb; 104(2):1175-200. PubMed ID: 14871153
    [No Abstract]   [Full Text] [Related]  

  • 8. Tungsten's redox potential is more temperature sensitive than that of molybdenum.
    Döring A; Schulzke C
    Dalton Trans; 2010 Jun; 39(24):5623-9. PubMed ID: 20495719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependent electrochemical investigations of molybdenum and tungsten oxobisdithiolene complexes.
    Schulzke C
    Dalton Trans; 2005 Feb; (4):713-20. PubMed ID: 15702182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical analogues relevant to molybdenum and tungsten enzyme reaction centres toward structural dynamics and reaction diversity.
    Sugimoto H; Tsukube H
    Chem Soc Rev; 2008 Dec; 37(12):2609-19. PubMed ID: 19020675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
    Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ
    J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes.
    Majumdar A
    Dalton Trans; 2014 Jun; 43(24):8990-9003. PubMed ID: 24798698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models for the pyranopterin-containing molybdenum and tungsten cofactors.
    Fischer B; Burgmayer SJ
    Met Ions Biol Syst; 2002; 39():265-316. PubMed ID: 11913128
    [No Abstract]   [Full Text] [Related]  

  • 14. Origin and early evolution of transition element enzymes.
    Egami F
    J Biochem; 1975 Jun; 77(6):1165-9. PubMed ID: 773920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroanalytical determination of tungsten and molybdenum in proteins.
    Hagedoorn PL; van't Slot P; van Leeuwen HP; Hagen WR
    Anal Biochem; 2001 Oct; 297(1):71-8. PubMed ID: 11567529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion of oxygen atom transfer in Mo and W enzymes by bicyclic forms of the pterin cofactor.
    McNamara JP; Joule JA; Hillier IH; Garner CD
    Chem Commun (Camb); 2005 Jan; (2):177-9. PubMed ID: 15724177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal synthesis and structural characterization of the first mixed molybdenum-tungsten capped-keggin polyoxometal complex: {[Co(dien)]4[(AsVO4)MoV8WVI4O33(micro2-OH)3]}.2H2O.
    Yu HH; Cui XB; Cui JW; Kong L; Duan WJ; Xu JQ; Wang TG
    Dalton Trans; 2008 Jan; (2):195-7. PubMed ID: 18097484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The d4/d3 redox pairs [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']z (z=0 and 1): structural consequences of electron transfer and implications for the inverse halide order.
    Adams CJ; Bartlett IM; Carlton S; Connelly NG; Harding DJ; Hayward OD; Orpen AG; Patron E; Ray CD; Rieger PH
    Dalton Trans; 2007 Jan; (1):62-72. PubMed ID: 17160175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts.
    Schrock RR; Hoveyda AH
    Angew Chem Int Ed Engl; 2003 Oct; 42(38):4592-633. PubMed ID: 14533149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.