BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11906186)

  • 1. The mechanism of salivary amylase hydrolysis: role of residues at subsite S2'.
    Mishra PJ; Ragunath C; Ramasubbu N
    Biochem Biophys Res Commun; 2002 Mar; 292(2):468-73. PubMed ID: 11906186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase.
    Ramasubbu N; Ragunath C; Mishra PJ
    J Mol Biol; 2003 Jan; 325(5):1061-76. PubMed ID: 12527308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.
    Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B
    Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase.
    Tseng CC; Miyamoto M; Ramalingam K; Hemavathy KC; Levine MJ; Ramasubbu N
    Arch Oral Biol; 1999 Feb; 44(2):119-27. PubMed ID: 10206330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human salivary alpha-amylase Trp58 situated at subsite -2 is critical for enzyme activity.
    Ramasubbu N; Ragunath C; Mishra PJ; Thomas LM; Gyémánt G; Kandra L
    Eur J Biochem; 2004 Jun; 271(12):2517-29. PubMed ID: 15182367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S; Sohier JS; Feller G
    J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y; Duan X; Wang L; Wu J
    J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the modes of actions of human salivary and pancreatic alpha-amylases on modified maltooligosaccharides.
    Nagamine Y; Omichi K; Ikenaka T
    J Biochem; 1988 Oct; 104(4):667-70. PubMed ID: 2467909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.
    Manas NH; Bakar FD; Illias RM
    J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    J Agric Food Chem; 2020 Jan; 68(3):838-844. PubMed ID: 31896254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft.
    Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S
    Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
    Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B
    Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by alpha-amylase.
    Besselink T; Baks T; Janssen AE; Boom RM
    Biotechnol Bioeng; 2008 Jul; 100(4):684-97. PubMed ID: 18351657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of salivary amylase to glucose polymer hydrolysis in premature infants.
    Murray RD; Kerzner B; Sloan HR; McClung HJ; Gilbert M; Ailabouni A
    Pediatr Res; 1986 Feb; 20(2):186-91. PubMed ID: 2418403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase.
    Kang YN; Adachi M; Utsumi S; Mikami B
    J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.
    Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B
    FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N
    FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding.
    Ragunath C; Manuel SG; Venkataraman V; Sait HB; Kasinathan C; Ramasubbu N
    J Mol Biol; 2008 Dec; 384(5):1232-48. PubMed ID: 18951906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features underlying the selective cleavage of a novel exo-type maltose-forming amylase from Pyrococcus sp. ST04.
    Park KH; Jung JH; Park SG; Lee ME; Holden JF; Park CS; Woo EJ
    Acta Crystallogr D Biol Crystallogr; 2014 Jun; 70(Pt 6):1659-68. PubMed ID: 24914977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L
    Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.