These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 1190659)

  • 1. The effect of light deprivation on the B-wave input-output function.
    Babkoff H
    Ann Ophthalmol; 1975 Oct; 7(10):1335-8. PubMed ID: 1190659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of light deprivation on the flickering B-wave.
    Babkoff H
    Ann Ophthalmol; 1976 Sep; 8(9):1089-100. PubMed ID: 970858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-deprivation and light-adaptation: a preliminary study.
    Babkoff H
    Ann Ophthalmol; 1977 Dec; 9(12):1535-9. PubMed ID: 606034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light deprivation profoundly affects gene expression of interphotoreceptor retinoid-binding protein in the mouse eye.
    Kutty G; Duncan T; Nickerson JM; Si JS; Van Veen T; Chader GJ; Wiggert B
    Exp Eye Res; 1994 Jan; 58(1):65-75. PubMed ID: 8157102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flicker: a "decay" effect after light deprivation.
    Cornwell AC
    Invest Ophthalmol Vis Sci; 1981 Jun; 20(6):809-12. PubMed ID: 7239851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative study of the rod and cone contributions to the generation of b-wave ERG and tectal evoked potential in the dark-adapted carp].
    Garina NS; Erchenkov VG; Vorontsov DD; Semina TK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):698-705. PubMed ID: 17147211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A form of congenital stationary night blindness with apparent defect of rod phototransduction.
    Peachey NS; Fishman GA; Kilbride PE; Alexander KR; Keehan KM; Derlacki DJ
    Invest Ophthalmol Vis Sci; 1990 Feb; 31(2):237-46. PubMed ID: 2303327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The d-wave in fish and the state of light adaptation.
    Gacić Z; Damjanović I; Bajić A; Milosević M; Mićković B; Nikcević M; Andjus PR
    Gen Physiol Biophys; 2007 Dec; 26(4):260-7. PubMed ID: 18281743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The behavior of the b-wave in the electroretinogram of light-adapted frogs during serial light exposure].
    Gneupel U; Güther HJ; Zaumseil J; Reim G; Berger H
    Acta Biol Med Ger; 1975; 34(5):849-55. PubMed ID: 1199605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Clinical electroretinography in the dog. Part 3].
    Spiess BM; Leber-Zürcher AC
    Schweiz Arch Tierheilkd; 1992; 134(2):61-74. PubMed ID: 1566024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens.
    Mitchell DE
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):51-79. PubMed ID: 1682958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish.
    Ren JQ; Li L
    Vision Res; 2004; 44(18):2147-52. PubMed ID: 15183681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark-adapted sensitivity, rhodopsin content, and background adaptation in pcd/pcd mice.
    Fulton AB; Manning KA; Baker BN; Schukar SE; Bailey CJ
    Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):386-93. PubMed ID: 7061210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuating effects of diazepam on the electroretinogram of normal humans.
    Jaffe MJ; Hommer DW; Caruso RC; Straw GM; de Monasterio FM
    Retina; 1989; 9(3):216-25. PubMed ID: 2595115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.
    Graves AL; Green DG; Fisher LJ
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):388-93. PubMed ID: 3972521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supernormal cone electroretinograms in central retinal vein occlusion.
    Gouras P; MacKay CJ
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):508-15. PubMed ID: 1544779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in oscillatory potentials in the canine electroretinogram during dark adaptation.
    Sims MH; Brooks DE
    Am J Vet Res; 1990 Oct; 51(10):1580-6. PubMed ID: 2240780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of picrotoxin on the absolute and increment retinal sensitivity.
    Popova E
    Acta Neurobiol Exp (Wars); 1991; 51(5-6):157-64. PubMed ID: 1821520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.