BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 11906784)

  • 1. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats.
    Shaffery JP; Sinton CM; Bissette G; Roffwarg HP; Marks GA
    Neuroscience; 2002; 110(3):431-43. PubMed ID: 11906784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid eye-movement sleep deprivation does not 'rescue' developmentally regulated long-term potentiation in visual cortex of mature rats.
    Shaffery JP; Roffwarg HP
    Neurosci Lett; 2003 May; 342(3):196-200. PubMed ID: 12757898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor (BDNF) reverses the effects of rapid eye movement sleep deprivation (REMSD) on developmentally regulated, long-term potentiation (LTP) in visual cortex slices.
    Shaffery JP; Lopez J; Roffwarg HP
    Neurosci Lett; 2012 Mar; 513(1):84-8. PubMed ID: 22361363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development.
    Lopez J; Roffwarg HP; Dreher A; Bissette G; Karolewicz B; Shaffery JP
    Neuroscience; 2008 Apr; 153(1):44-53. PubMed ID: 18359575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 391(3):96-101. PubMed ID: 16154270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of 1 week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens.
    Hogan D; Roffwarg HP; Shaffery JP
    J Sleep Res; 2001 Dec; 10(4):285-96. PubMed ID: 11903858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus.
    Kim EY; Mahmoud GS; Grover LM
    Neurosci Lett; 2005 Nov; 388(3):163-7. PubMed ID: 16039776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience.
    Kirkwood A; Lee HK; Bear MF
    Nature; 1995 May; 375(6529):328-31. PubMed ID: 7753198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo.
    Heynen AJ; Bear MF
    J Neurosci; 2001 Dec; 21(24):9801-13. PubMed ID: 11739588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effect of dark rearing on long-term potentiation induced by layer IV and white matter stimulation in rat visual cortex.
    Salami M; Fathollahi Y; Semnanian S; Atapour N
    Neurosci Res; 2000 Dec; 38(4):349-56. PubMed ID: 11164561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2009 Jun; 1276():58-66. PubMed ID: 19409376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus.
    Ishikawa A; Kanayama Y; Matsumura H; Tsuchimochi H; Ishida Y; Nakamura S
    Eur J Neurosci; 2006 Jul; 24(1):243-8. PubMed ID: 16882020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional and temporal specificity of intrinsic plasticity mechanisms in rodent primary visual cortex.
    Nataraj K; Turrigiano G
    J Neurosci; 2011 Dec; 31(49):17932-40. PubMed ID: 22159108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex.
    Li S; Wang L; Tie X; Sohya K; Lin X; Kirkwood A; Jiang B
    J Neurosci; 2017 Sep; 37(39):9353-9360. PubMed ID: 28821676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on long-term potentiation in developing rat visual cortex during the critical period of plasticity.
    Gao P; Yin Z; Liu Y; Wang S; Fan H
    Yan Ke Xue Bao; 2005 Mar; 21(1):38-43. PubMed ID: 17162915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP.
    Romcy-Pereira R; Pavlides C
    Eur J Neurosci; 2004 Dec; 20(12):3453-62. PubMed ID: 15610178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primed-bursts induced long-term potentiation in rat visual cortex: effects of dark-rearing.
    Atapour N; Esteky H; Fathollahi Y; Mansouri FA
    Brain Res; 1999 Dec; 851(1-2):148-53. PubMed ID: 10642838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.