These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11906785)

  • 1. Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections.
    Casanovas-Aguilar C; Miró-Bernié N; Pérez-Clausell J
    Neuroscience; 2002; 110(3):445-58. PubMed ID: 11906785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Callosal neurones give rise to zinc-rich boutons in the rat visual cortex.
    Casanovas-Aguilar C; Christensen MK; Reblet C; Martínez-García F; Pérez-Clausell J; Bueno-López JL
    Neuroreport; 1995 Feb; 6(3):497-500. PubMed ID: 7539303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections.
    Casanovas-Aguilar C; Reblet C; Pérez-Clausell J; Bueno-López JL
    J Chem Neuroanat; 1998 Aug; 15(2):97-109. PubMed ID: 9719362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrograde transport of sodium selenite and intracellular injection of micro-ruby: a combined method to describe the morphology of zinc-rich neurones.
    Miró-Bernié N; Sancho-Bielsa FJ; López-García C; Pérez-Clausell J
    J Neurosci Methods; 2003 Aug; 127(2):199-209. PubMed ID: 12906949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between callosal, thalamic and associational projections to the visual cortex of the developing rat.
    Sefton AJ; Dreher B; Lim WL
    Exp Brain Res; 1991; 84(1):142-58. PubMed ID: 1713169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri).
    Tigges J; Tigges M; Anschel S; Cross NA; Letbetter WD; McBride RL
    J Comp Neurol; 1981 Nov; 202(4):539-60. PubMed ID: 7298914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric connections of the visual cortex in the grey squirrel (Sciurus carolinensis).
    Gould HJ
    J Comp Neurol; 1984 Feb; 223(2):259-301. PubMed ID: 6200520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotopic and homotopic callosal connections in rat visual cortex.
    Miller MW; Vogt BA
    Brain Res; 1984 Apr; 297(1):75-89. PubMed ID: 6722538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey.
    Kritzer MF; Cowey A; Somogyi P
    J Neurosci; 1992 Nov; 12(11):4545-64. PubMed ID: 1331364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The postnatal development of clustered intrinsic connections in area 18 of the visual cortex in kittens.
    Price DJ
    Brain Res; 1986 Jan; 389(1-2):31-8. PubMed ID: 2418927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity in the inter-laminar connections made by neocortical neurones.
    Thomson AM; Morris OT
    J Neurocytol; 2002; 31(3-5):239-46. PubMed ID: 12815243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.
    Kisvarday ZF; Cowey A; Smith AD; Somogyi P
    J Neurosci; 1989 Feb; 9(2):667-82. PubMed ID: 2537391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections.
    Budinger E; Heil P; Scheich H
    Eur J Neurosci; 2000 Jul; 12(7):2425-51. PubMed ID: 10947821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticocortical fiber connections of the rabbit visual cortex: a fiber degeneration study.
    Towns LC; Giolli RA; Haste DA
    J Comp Neurol; 1977 Jun; 173(3):537-60. PubMed ID: 856896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.
    Insausti R; Herrero MT; Witter MP
    Hippocampus; 1997; 7(2):146-83. PubMed ID: 9136047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats.
    Mitchell BD; Cauller LJ
    Brain Res; 2001 Dec; 921(1-2):68-77. PubMed ID: 11720712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental remodeling of primate visual cortical pathways.
    Barone P; Dehay C; Berland M; Bullier J; Kennedy H
    Cereb Cortex; 1995; 5(1):22-38. PubMed ID: 7719128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laminar specificity of intrinsic connections in Broca's area.
    Tardif E; Probst A; Clarke S
    Cereb Cortex; 2007 Dec; 17(12):2949-60. PubMed ID: 17395607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoro-Gold tracing of zinc-containing afferent connections in the mouse visual cortices.
    Garrett B; Sørensen JC; Slomianka L
    Anat Embryol (Berl); 1992; 185(5):451-9. PubMed ID: 1567021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: spatial and temporal organisation of functional synaptic responses.
    Nowak LG; James AC; Bullier J
    Exp Brain Res; 1997 Nov; 117(2):219-41. PubMed ID: 9419069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.